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Abstract
Morphine is widely used to treat chronic pain, however its utility is hindered by the development
of tolerance to its analgesic effects. While N-methyl-D-aspartate (NMDA) receptors are known to
play roles in morphine tolerance and dependence, less is known about the roles of individual
NMDA receptor subtypes. In this study, Ro 256981, an antagonist of the NMDA receptor subunit
NR2B, was used to reduce the expression of analgesic tolerance to morphine. The mechanisms
altered with chronic drug use share similarities with those underlying the establishment of long-tem
potentiation (LTP) and behavioral memory. Since NMDA NR2B receptors in the anterior cingulate
cortex (ACC) play roles in the establishment of LTP and fear memory, we explored their role in
changes that occur in this region after chronic morphine. Both systemic and intra-ACC inhibition
of NR2B in morphine-tolerant animals inhibited the expression of analgesic tolerance.
Electrophysiological recordings revealed a significant increase in the NR2B component of NMDA
receptor mediated excitatory postsynaptic currents (EPSCs), at both synaptic and extra-synaptic
sites. However, there was no change in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor mediated EPSCs. This study suggests that selective inhibition of NMDA NR2B
receptors may prove useful in combating the development of analgesic tolerance to morphine and
proposes a novel role for the ACC in opioid tolerance and morphine induced changes in synaptic
plasticity.

Background
Although morphine is the most widely used analgesic to
treat moderate to severe pain its use is hindered by the
development of physical dependence and tolerance to its
analgesic effects. The utility of N-methyl-D-aspartate
receptor (NMDAR) antagonists in both potentiating and
prolonging the analgesic effects of morphine while atten-
uating analgesic tolerance and physical withdrawal symp-
toms has been widely reported (see [1-5] for review). For
example, the non-competitive NMDAR antagonist

MK801 has been shown to modulate morphine analgesia,
reverse analgesic tolerance and reduce withdrawal behav-
iors [6-9]. Pharmacological manipulation of NMDA
receptor activity may pose a useful strategy for increasing
the efficacy of morphine as a treatment for chronic pain in
the future.

NMDARs are composed of NR1, NR2 (A, B, C, and D) and
NR3 (A and B) subunits in the central nervous system. It
is known that the NR2A and NR2B subunits predominate
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in the forebrain neurons, where they determine many
functional properties of NMDARs [10,11]. For example,
NR2B containing NMDA receptors desensitize less and
take longer to recover from desensitization as compared
to NR2A containing NMDA receptors [10,12]. The down
regulation of NR2B expression throughout development
is marked by a concomitant change in NMDA receptor
function [13]. The unique functional properties of NR2B
make it an attractive target for those who wish to study the
mechanisms behind experience dependent changes in
synaptic plasticity and behavioral responses.

The anterior cingulate cortex (ACC) plays important roles
in emotion, addiction, learning and memory and persist-
ent pain [14-17]. Overexpression of NR2B in the ACC and
other forebrain regions significantly enhanced learning
and memory as well as chronic pain caused by peripheral
inflammation [18,19]. NR2B receptors expressed in the
ACC also appear to play a role in synaptic plasticity
(including LTP and long-term depression (LTD)) and the
expression of fear memory [20,21]. Since addiction and
memory share certain intracellular cascades in common
[22,23], we wanted to determine if NR2B receptors in the
ACC play a role in the expression of analgesic tolerance
and changes in plasticity occurring after chronic mor-
phine use. Our results reveal a significant enhancement of
NMDA NR2B mediated responses in the ACC after
chronic morphine treatment and suggest that such an
enhancement may contribute to the development of mor-
phine tolerance.

Results
NR2B plays a role in acute morphine-induced analgesia
NMDA receptor antagonists are reported to potentiate,
inhibit, or not to alter morphine antinociception with var-
iable results arising from the use of different doses of
antagonist and morphine, as well as experimental animals
and tests for nociception [1]. To determine the effect of Ro
256981 on acute morphine antinociception, mice were
injected intraperitoneally with either Ro 256981 or saline
(n = 4, i.p.) before receiving a single injection of mor-
phine (10 mg/kg, s.c), and hot-plate response latencies
were recorded every 30 min afterwards for three hours.
Statistical analysis revealed a significant affect of treat-
ment (p < 0.05) and time (p < 0.001) with a significant
interaction between treatment and time (p < 0.05). Signif-
icant differences between response latencies occurred 90,
120, 150 and 180 minutes after morphine injection (p <
0.05 for all, Figure 1A). It is important to note that Ro
256981 is not in itself analgesic at this dose [21]. These
results suggest that Ro 256981 potentiates the analgesic
effect of morphine.

NR2B inhibition affects opioid analgesic tolerance
To determine if antagonizing the activity of NR2B can
affect opioid analgesic tolerance, mice (n = 8) were given
eight daily injections of morphine (10 mg/kg, s.c.) and
received Ro 256981 (5 mg/kg, i.p.) before the last mor-
phine injection. One way repeated measures ANOVA
revealed a significant affect of treatment (p < 0.001) with
significant increases in response latency occurring
between Day 8 (Ro + morphine) and Days 6 and 7 (p <
0.001, p < 0.05 respectively, morphine alone, Figure 1B).
However, Ro 256981 did not totally reverse the estab-
lished opioid tolerance since there were still significant
differences between response latencies on Day 8, as com-
pared to Day 1 (p < 0.01), Day 2 (p < 0.01) and Day 3 (p
< 0.05). Interestingly, there was not a significant differ-
ence between responses on Day 8 and those on Days 4
and 5 (p = 1.00 and p = 0.61 respectively), suggesting that
Ro 256981 administration on the 8th day of morphine
treatment restored morphine-induced antinociception to
a level early on in the development of analgesic tolerance.
Hot-plate responses were significantly longer on Days 4
and 5, as compared to Day 7 (p < 0.001 for both).

Attenuation of analgesic tolerance by chronic co-
administration of Ro 256981 with morphine
To determine if NR2B receptors play a role in the acquisi-
tion of opioid analgesic tolerance, Ro 256981 was co-
administered daily with morphine. In this experiment,
mice received either Ro 256981 (5 mg/kg, i.p., n = 11)
before morphine (10 mg/kg, s.c.), morphine alone (n = 7)
or saline (n = 5) daily for eight days. Statistical analysis
revealed a significant affect of treatment (p < 0.001) and
day (p < 0.001) as well as a significant interaction between
treatment and day (p < 0.001, Figure 1C). Importantly,
there were no significant differences across days for mice
receiving daily saline injections. Tolerance developed in
mice receiving morphine alone (Day 1 vs. Day 8: p <
0.001) and in mice receiving both Ro 256981 and mor-
phine (Day 1 vs. Day 8: p < 0.001). However, post-hoc
analysis revealed significant differences in response laten-
cies between treatment groups on individual days. For
example, there was no difference between morphine
treated and Ro 256981 and morphine treated mice on
Day 1 (p = 0.74), but a significant difference arose on Day
2 (p < 0.001) and persisted during Days 3, 4, 6 and 7 (p <
0.001, p < 0.01, p < 0.05, p < 0.05 respectively). It is also
interesting to note that significant differences between
morphine-treated mice and control mice receiving saline
disappeared by the 6th day of treatment (p = 0.28), which
did not occur until the 8th day in mice receiving both Ro
256981 and morphine (p = 0.17). Taken together, these
results suggest that daily co-administration of Ro 256981
with morphine can hinder the development of opioid
analgesic tolerance but not completely abolish its estab-
lishment, at least at the dose tested in this study.
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The role of NR2B receptors in acute morphine-induced analgesia and analgesic toleranceFigure 1
The role of NR2B receptors in acute morphine-induced analgesia and analgesic tolerance. (A) Morphine analgesia 
was greater in mice pretreated with Ro25-6981 (5 mg/kg, i.p., n = 5) compared to mice pretreated with saline (n = 4) beginning 
90 min after injection. There was a significant effect of treatment (p < 0.05) with significant differences occurring at 90, 120, 
150 and 180 minutes after injection (p < 0.05 for all). * represents a significant difference from saline injected mice. (B) 
Response latencies were significantly increased by Ro 256981 injection (5 mg/kg, i.p., n = 8). Day 7 vs. Day 8, p < 0.001). * rep-
resents a significant difference from responses on Day 6 and 7. (C) Daily co-administration of Ro 256981 (5 mg/kg, i.p.) with 
morphine (10 mg/kg, s.c.) attenuates opioid analgesic tolerance (p < 0.001) compared to mice receiving morphine (n = 7) or 
saline (n = 5). There was no difference between morphine treated and Ro256981+morphine treated mice on Day 1 (p = 0.74) 
but a significant difference arose on Day 2 (p < 0.001) and persisted during Days 3, 4, 6 and 7 (p < 0.001, p < 0.01, p < 0.05, p 
< 0.05 respectively).
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NR2B receptors in the ACC play a role in the expression of 
opioid tolerance
To determine if inhibiting NR2B receptors in the ACC
could reverse established analgesic tolerance, intra-ACC
injections of Ro 256981 were performed in tolerant mice.
Daily injections of morphine (10 mg/kg, s.c.) were
administered to mice implanted bilaterally with cannulas
directed to the ACC. Before testing hotplate response
latencies on the eighth day, mice received either Ro
256981 (n = 7, 1 μg/μl, bilaterally) or saline (n = 5) injec-
tions in the ACC. While there were no differences in
response latencies on the seventh day of testing between
groups (p = 0.72), there was a significant difference in
responses 30 minutes after microinjection (p < 0.001, Fig-
ure 2B). The effect of Ro 256981 in the ACC was abol-
ished by one hour after microinjection (p = 0.66). These
results indicate that NR2B receptors in the ACC play a role
in the behavioral responses associated with opioid analge-
sic tolerance.

AMPA receptor mediated synaptic transmission after 
morphine treatment
To determine whether synaptic transmission was altered
in morphine tolerant mice, conventional whole-cell patch
clamp recordings were performed in visually identified
pyramidal neurons in layer II/III of the ACC. We recorded
AMPA receptor-mediated miniature excitatory postsynap-
tic currents (mEPSCs) in saline or morphine-treated mice.
In the presence of tetrodoxin (1 μM), AP5 (50 μM) and

picrotoxin (100 μM), AMPA mEPSCs were pharmacologi-
cally isolated (Figure 3A). The frequency of mEPSCs in
saline treated mice was 1.3 ± 0.2 Hz (n = 15). No signifi-
cant difference was found in the frequency of mEPSCs in
morphine treated mice (1.1 ± 0.1 Hz, n = 16, P = 0.48)
compared to saline (Figure 3A and 3B). Likewise, there
was no difference in mEPSC amplitude between saline
treated (7.1 ± 0.3 pA, n = 16) and morphine treated mice
(7.6 ± 0.3 pA, n = 16, P = 0.17) (Figure 3A and 3C). These
results suggest that AMPA receptor-mediated synaptic
transmission is normal in morphine tolerant mice.

Functional upregulation of synaptic and extrasynaptic 
NR2B in morphine tolerant mice
We have previously reported roles for the NR2B subunit in
synaptic plasticity in the ACC [20,21,24]. To determine if
NR2B receptors in the ACC were affected by chronic mor-
phine treatment, ACC neurons were held at a potential of
-20 mV to relieve the Mg2+ blockade and NMDA EPSCs
were isolated in the presence of CNQX (50 μM) and picro-
toxin (100 μM). Perfusion of Ro 256981 (3 μM) caused a
substantial decrease in NMDA EPSCs (Figure 4A), referred
to as the NR2B component. In saline treated mice, the
NR2B component was 11.6 ± 3.8% of the total NMDA
current (n = 6). A significant increase in the NR2B compo-
nent was observed in morphine treated mice (25.6 ± 3.8%
of total currents, n = 8, P < 0.05) (Figure 4A and 4B). Next,
a short train of stimuli consisting of 7 pulses at 200 Hz
was used to study the extrasynaptic NR2B component in

Antagonism of NR2B receptors in the ACC can reverse opioid analgesic tolerance compared to mice receiving saline in the ACCFigure 2
Antagonism of NR2B receptors in the ACC can reverse opioid analgesic tolerance compared to mice receiving 
saline in the ACC. (A) Analgesic tolerance in ACC cannulated mice developed over the seven-day test period. (B) Bilateral 
microinjection of Ro 256981 (1 μg in 1 μl, bilaterally, n = 7; filled circles) into the ACC significantly increased response laten-
cies compared to mice receiving saline injections (n = 5; open circles) and to responses on Day 7.
Page 4 of 11
(page number not for citation purposes)



Molecular Brain 2008, 1:2 http://www.molecularbrain.com/content/1/1/2
the ACC after chronic morphine treatment. Consistent
with previous studies in the hippocampus [25], this stim-
ulation induced larger NMDA EPSCs with a slower decay
(Figure 4C), suggesting that extrasynaptic NMDA recep-
tors are involved. Ro 256981 (3 μM) blocked 34.1 ± 5.4%
(n = 7) of the total train-induced NMDA current in saline
treated mice (Figure 4C and 4D), while a significant
increase in the NR2B component was again seen in mor-
phine treated mice (53.7 ± 4.5%, n = 7, P < 0.05) (Figure
4C and 4D). Taken together, these results suggest that
chronic morphine treatment increases both synaptic and
extrasynaptic NR2B NMDA receptor activity.

Enhanced LTP in the ACC of morphine treated mice
In the ACC, NR2B receptors contribute to the induction of
long-term potentiation (LTP) [20]. Since the function of
NR2B was upregulated in the ACC of morphine treated
mice, we investigated whether LTP was also enhanced.
LTP was induced using the spike-timing protocol (see
Materials and Methods) within 12 minutes after establish-
ing the whole-cell configuration to avoid washout of
intracellular contents that are critical for the establish-
ment of synaptic plasticity. LTP was induced in the ACC of
saline treated mice (141.7 ± 10.8% of baseline response,
n = 7, p < 0.05 compared with baseline response before
the stimulation, Figure 5A and 5C) after obtaining a stable
baseline of AMPA receptor-mediated responses. Interest-
ingly, the same protocol resulted in a significantly
enhanced potentiation in morphine treated mice (166.9 ±

13.6% of baseline response, n = 8 slices; P < 0.05 com-
pared with saline treated group, Figure 4B and 4C). These
results suggest that chronic morphine treatment leads to
the enhancement of LTP in the ACC.

Discussion
In this study we demonstrate a role for the NMDA NR2B
subunit in the expression and acquisition of analgesic tol-
erance and in responses to acute morphine analgesia.
Additionally, we show that inhibiting NR2B receptors in
the ACC can inhibit analgesic tolerance. Changes in syn-
aptic plasticity associated with chronic drug use are well
known, however, changes in prefrontal regions have not
been documented. We show that morphine-tolerant ani-
mals not only show an increase in both the synaptic and
extrasynaptic NR2B component of NMDA receptor
responses but also exhibit facilitated LTP. This is the first
study, to our knowledge, to look at the selective role of
NMDA NR2B receptors in the expression and acquisition
of opioid analgesic tolerance and in the expression of
morphine-induced changes in synaptic plasticity in the
ACC.

Although a myriad of studies have reported on the effects
of NMDAR antagonists on morphine induced analgesia,
the results are often conflicting and are probably due to
different doses, experimental animals, time courses and
behavioral tests used [26-28]. For example, sex differences
in NMDAR antagonist induced modulation of morphine

No change in mEPSCs in morphine treated miceFigure 3
No change in mEPSCs in morphine treated mice. (A) Representative traces showing mEPSCs in saline (upper) or mor-
phine treated mice (lower). (B) Pooled data showed that there is no difference in mEPSC frequency in saline (n = 16) and mor-
phine treated groups (n = 16). (C) No difference in amplitude of mEPSCs in the ACC of saline (n = 16) and morphine treated 
groups (n = 16).
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Enhanced NR2B NMDA receptor function in morphine-treated miceFigure 4
Enhanced NR2B NMDA receptor function in morphine-treated mice. (A) Representative traces showing that the 
NR2B component was revealed by application of Ro256981 (3 μM) in saline (upper) or morphine treated mice (lower). (B) 
Pooled data showed a significant increase in the NR2B component in morphine treated mice (n = 8) compared with that of 
saline group (n = 6). (C) A short train of stimuli (200 Hz, 7 pulses) induced lager NMDA EPSCs. The NR2B component, includ-
ing extrasynaptic NR2B, was revealed by application of Ro 256981 (3 μM) in saline (upper) or morphine treated mice (lower). 
(D) Pooled data showed a significant increase in the NR2B component of short train-induced NMDA current in morphine 
treated mice (n = 7) compared with that of the saline group (n = 7).
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Enhanced cingulate LTP in morphine treated miceFigure 5
Enhanced cingulate LTP in morphine treated mice. (A) LTP was induced with the spike-timing protocol in ACC neu-
rons in wild-type mice (n = 7). (B) Enhanced potentiation was observed in morphine treated mice (n = 8). The insets show 
averages of six EPSCs at baseline responses (1) and 30 min (2) after LTP induction (arrow). The dashed line indicates the mean 
basal synaptic response. (C) There was a significant increase in LTP in morphine treated mice compared to saline treated 
group.
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analgesia have been reported [6,28]. The direction of this
modulation is also unclear, since some studies report that
MK801 has no effect on morphine analgesia [29-31]
while others report an inhibition [32,33] and others an
increase [6,9]. The NMDAR antagonists LY 235959, dex-
tromethorphan and AP5 also potentiate morphine anal-
gesia [34-38].

The ability of NMDAR antagonists to reduce the develop-
ment of tolerance has been extensively demonstrated [3].
MK801 attenuated the development of morphine toler-
ance and reduced withdrawal behaviors without affecting
acute analgesia [8]. The NMDA receptor antagonists
LY274614, dextromethorphan, AP5 and ketamine were
all shown to attenuate analgesic tolerance [9,30,38-42].
Here we present evidence for a role of the NR2B subunit
in development of analgesic tolerance. Although we are
still unclear about the exact molecular mechanism for the
NR2B containing NMDA receptor in morphine tolerance,
one possible mechanism is that NR2B containing NMDA
receptor may contribute to the induction of the synaptic
process that may contribute to the establishment of mor-
phine tolerance. Future studies are clearly needed to inves-
tigate this possibility. Since the use of most NMDAR
antagonists is hindered by side-effects at clinically rele-
vant doses, Ro 256981 may prove more useful in treating
analgesic tolerance in patients.

Previous studies report a role for the NR2B subunit in
acute morphine analgesia with conflicting results
[6,43,44]. The NR2B antagonist ifenprodil was shown to
both potentiated and prolong the analgesic effects of mor-
phine at a dose that was itself antinociceptive [43]. A more
recent study showed that a lower dose of ifenprodil was
not antinociceptive but still potentiated and prolonged
morphine analgesia [44]. A study reporting that Ro
256981 attenuated responses to morphine [6] seemingly
contradicts our present findings. However, it is important
to note that different doses and nociceptive tests were
used. The present study used 5 mg/kg Ro 256981 and the
hotplate test while Nemmani and colleagues (2004) used
50 mg/kg and a hot water tail flick paradigm. Importantly,
the dose of Ro 256981 used in the present study was pre-
viously shown not to affect motor coordination, acute
thermal and mechanical sensitivity [21].

Human brain imaging shows that the ACC is strongly acti-
vated when subjects are exposed to drug-associated cues
[45-47]. For example, the ACC is activated during cocaine
use and also during cue-induced craving for cocaine
[48,49]. While lesion of the rat ACC did not affect cocaine
self-administration, it was effective at preventing drug
associated cues from inducing cocaine seeking behavior
[50]. Furthermore, when rats were exposed to an environ-
ment where they were previously allowed to self adminis-

ter cocaine, immediate early gene expression, indicative of
neuronal activity, was increased in the ACC [51]. Neuro-
nal activity was also increased in the ACC after exposure
to a morphine-paired environment [52,53]. The mu opi-
oid receptor is robustly expressed in the ACC [54] and
microinjection of morphine directly into the ACC reduced
the affective component of pain [55]. Acute and chronic
morphine treatment reduced the extracellular levels of
glutamate in the ACC [56], suggesting that glutamatergic
systems in the ACC may play a role in morphine's effects.
Further studies are needed to identify the precise role that
the ACC plays in the molecular and behavioral adapta-
tions that occur with the chronic use of drugs of abuse.

Although the relationship between NMDA receptors and
the effects of morphine has been thoroughly investigated,
fewer studies examine changes in NMDA receptor medi-
ated responses after prolonged morphine use. Chronic
morphine treatment enhanced NMDA receptor mediated
responses in spinal cord dorsal horn neurons, however
the individual contribution of NR2A or NR2B subunits
was not addressed [57]. In the present study, we report
that chronic morphine treatment produced significant
changes in the NMDA receptor mediated responses. These
findings indicate that chronic morphine treatment may
trigger long-term upregulation of NMDA receptors along
the somatosensory pathways and pain perception related
cortical areas. Our electrophysiological data indicate that
alterations in NR2B receptor function may not only occur
at synaptic sites, but also at extrasynaptic areas. This find-
ing is consistent with recent evidence suggesting that
NR2B subunits are located at extrasynaptic suites, and are
recruited when repetitive stimulation allows for the spill-
over of glutamate [25]. Further study is needed to uncover
the molecular signaling pathways that are engaged when
chronic morphine treatment leads to the modulation of
NR2B receptor mediated responses.

Recent studies show that NR2B receptor activation con-
tributes, at least in part, to the induction of synaptic LTP
in the ACC [20]. We found that LTP was significantly
enhanced in the ACC of morphine tolerant mice com-
pared to saline treated animals, suggesting that NR2B
receptor mediated responses were enhanced after chronic
morphine treatment. We cannot rule out the possible con-
tribution of other signaling molecules such as cAMP path-
ways and other messengers that are downstream from
opiate receptors.

Conclusion
In summary, we present evidence for a role of the NMDA
subunit NR2B in morphine analgesia and opioid toler-
ance. We also show that inhibiting NR2B receptors in the
ACC can inhibit behavioral responses in tolerant animals,
suggesting for the first time that this prefrontal region
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plays a role in opioid tolerance. We have previously
shown that NMDA NR2B receptors in the ACC play a role
in persistent pain, memory and LTP [58]. Our results sup-
port the idea that the alterations that occur in response to
drugs of abuse are mirrored by the mechanisms that estab-
lish learning and memory and demonstrate a novel role
for the ACC in the expression of opioid analgesic toler-
ance. Our results suggest that drugs targeting the NR2B
subunit may prove useful in attenuating analgesic toler-
ance to morphine that occurs clinically.

Methods
Animals
Adult male (8–10 weeks old) C57Bl/6 mice from Charles
River were used in all experiments. At the conclusion of
experiments, animals were humanely killed by an over-
dose of inhaled anesthetic (isoflurane). The animals were
housed on a 12 h: 12 h light: dark cycle with food and
water available ad libitum. All mouse protocols are in
accordance with NIH guidelines and were approved by
the Animal Care and Use Committee at the University of
Toronto. All experiments were performed blind to the
treatment.

Hot-plate test
The hotplate consists of a thermally-controlled metal
plate (55°C), surrounded by four Plexiglas walls (Colum-
bia Instruments; Columbus, Ohio). The time between
placement of the animal on the plate and the licking or
lifting of a hindpaw is measured with a digital timer. Mice
are removed from the hotplate immediately after the first
response and a cut-off time of 30 seconds was imposed to
prevent tissue damage. Response latencies are reported as
a percentage of maximal possible effect (MPE) [(response
latency-baseline response latency)/(cut off latency-base-
line response latency)*100].

Morphine administration
To test for acute morphine induced antinociception, Ro
256981 (Tocris Cookson, St Louis, MO, 5 mg/kg in saline)
or an equivalent volume of saline was injected 10–15
minutes before morphine (10 mg/kg s.c.). To study the
role of NR2B in the expression of analgesic tolerance,
mice were injected once a day for eight days with 10 mg/
kg morphine (s.c.) and received Ro 256981 (5 mg/kg, i.p.)
before the last morphine injection. To test for a role in the
acquisition of tolerance, mice were injected with Ro
256981 (5 mg/kg, i.p.) before morphine (10 mg/kg s.c.)
daily for eight days.

ACC cannula implantation and microinjection
Under ketamine and xylazine anesthesia, 24-gauge guide
cannulas were implanted bilaterally into the ACC (0.7
mm anterior to Bregma, ± 0.4 mm lateral from the mid-
line, 1.7 mm beneath the surface of the skull). Mice were

given at least 2 weeks to recover after cannula implanta-
tion. For intra-ACC injections, mice were anesthetized
with 2–3% isoflurane anesthesia in a gas mixture of 30%
O2 balanced with nitrogen and placed in a Kopf stereo-
taxic instrument. A 30-gauge injection cannula was 0.1
mm lower than the guide. The microinjection apparatus
consisted of a Hamilton syringe (5 ml), connected to an
injector needle (30 gauge) by a thin polyethylene tube,
and motorized syringe pump. Ro 256981 (1.0 μg/μl, in
saline) was infused into each side of the ACC at a rate of
0.05 μl/min, an equivalent volume of saline was used as a
control. After injection, the microinjection needle was left
in place for at least 5 minutes.

Whole-cell Patch Clamp Recordings
Mice were anesthetized with 1–2% isoflurane before
decapitation. Coronal slices containing the ACC (300
μm) were prepared using methods reported previously
[21]. Slices were then transferred to a room temperature
submerged recovery chamber with oxygenated (95% O2
and 5% CO2) solution containing (in mM): NaCl, 124;
NaHCO3, 25; KCl, 2.5; KH2PO4, 1; CaCl2, 2; MgSO4, 2;
glucose, 10. After a one-hour recovery period, slices were
placed in a recording chamber on the stage of an Axioskop
2FS microscope (Zeiss, Thornwood, NY) equipped with
infrared DIC optics for patch clamp recordings. Postsyn-
aptic currents were recorded with an Axon 200B amplifier
(Molecular Devices, Union City, CA). Excitatory postsyn-
aptic currents (EPSCs) were recorded from layer II/III neu-
rons with an Axon 200B amplifier (Molecular devices,
CA) and stimuli were delivered by a bipolar tungsten
stimulating electrode placed in layer V of ACC slices. Elec-
tric square-wave voltage pulses (200 μs, 4–14 V) were gen-
erated using a Grass S88 stimulator (Grass instrument
Co., Quincy, MA) attached to a Grass SIU5D isolator unit.
EPSCs were induced by repetitive stimulations at 0.02 Hz
and neurons were voltage clamped at -70 mV. The record-
ing pipettes (3–5 MΩ) were filled with a solution contain-
ing (mM): 145 K-gluconate, 5 NaCl, 1 MgCl2, 0.2 EGTA,
10 HEPES, 2 Mg-ATP, and 0.1 Na3-GTP (adjusted to pH
7.2 with KOH). Unless stated otherwise, the membrane
potential was held at -65 mV throughout all experiments.

LTP was induced within 12 min after establishing the
whole-cell configuration to prevent a wash out effect [59].
The LTP induction protocol used (referred to as spike-tim-
ing protocol) pairing 3 presynaptic stimuli, which caused
3 EPSPs (10 ms ahead), with 3 postsynaptic APs at 30 Hz,
paired 15 times every 5 s [20]. The NMDA receptor-medi-
ated component of EPSCs was pharmacologically isolated
in ACSF containing: CNQX (20 μM) and picrotoxin (100
μM). The patch electrodes for NMDA receptor-mediated
EPSCs contained (in mM) 102 cesium gluconate, 5 TEA
chloride, 3.7 NaCl, 11 BAPTA, 0.2 EGTA, 20 HEPES, 2
MgATP, 0.3 NaGTP, and 5 QX-314 chloride (adjusted to
Page 9 of 11
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pH 7.2 with CsOH). Neurons were voltage clamped at -20
mV and NMDA receptor-mediated EPSCs were evoked at
0.05 Hz. Access resistance was 15–30 MΩ and was moni-
tored throughout the experiment. Data were discarded if
access resistance changed more than 15% during an exper-
iment. Statistical comparisons were performed using the
Student's t-test.

Data analysis and statistics
Statistical comparisons were made using one way or two
way repeated measures ANOVA (Student-Newmann-
Keuls test was used for post hoc comparison). All data is
represented by the mean +/- S.E.M. In all cases, p < 0.05 is
considered statistically significant.
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