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Abstract
Using an endophenotype-driven screen, a new study finds that α-calcium/calmodulin kinase II
mutant mice exhibit a range of behavioral abnormalities related to schizophrenia. Perhaps most
strikingly, this cluster of schizophrenia-related endophenotypes was associated with abnormal
neurogenesis in the adult hippocampus, raising the possibility that disrupted adult neurogenesis lies
at the core of this and other psychiatric disorders.

Editorial
Schizophrenia is a chronic, debilitating form of mental ill-
ness, affecting more than 1% of the adult population [1].
Current treatments are palliative at best – reducing the
severity of symptoms rather than providing a cure – in
part, because of the paucity of our understanding of the
molecular bases of this complex, polygenic disorder. A
more comprehensive understanding of the molecular
underpinnings of schizophrenia is an essential founda-
tion for the development more effective treatments (and
eventual cure).

A new study by Miyakawa and colleagues [this issue,
Molecular Brain 2008, 1:6] sheds fresh light on potential
molecular mechanisms underlying schizophrenia. In their
study, the authors ran different lines of mutant mice
through a comprehensive behavioral test battery in order
to screen for behavioral abnormalities relevant to schizo-
phrenia. In such a phenotypic screen, there are two critical
decisions: First, which behaviors to focus on? As is the case
with many psychiatric disorders, schizophrenia is charac-
terized by a bafflingly heterogeneous collection of behav-

ioral symptoms. These include both positive symptoms
(e.g., hallucinations, delusions, disordered thought) and
negative symptoms (e.g., anhedonia, decreased motiva-
tion, attentional problems and impaired working mem-
ory). Clearly, some of these abnormalities are uniquely
human and impossible to model in a mouse (even for the
most adept mouse psychiatrist). The solution, then, is to
focus on a subset (rather than the entire constellation) of
behavioral abnormalities that are nonetheless heritable
and readily modeled in mice. Using this endophenotype-
driven approach, Miyakawa and colleagues focused on
characterizing working memory, anxiety, aggression and
infradian and circadian rhythms in their mutant mice.

The second critical decision is which mice to screen?
Thousands of knockout, knockin and transgenic lines of
mice have been engineered. As screening large numbers of
mice is prohibitively time-consuming and expensive, it
makes sense to narrow down the field to a more tractable
number of players. Here, Miyakawa and colleagues took
advantage of their previous work with mice that have a
forebrain-specific deletion of calcineurin (CN). They
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found that these mice exhibited abnormalities in a
number of behaviors related to schizophrenia [2], and,
therefore, in the present study they decided to screen 7
mouse lines with mutations related to either CN signaling
or CN-related mechanisms. Of these 7, the mice with the
most striking behavioral phenotype were those carrying a
heterozygous null mutation for α-calcium/calmodulin
kinase II (α-CaMKII+/- mice). These are mice with a storied
history in the field of learning and memory. Originally
generated by Alcino Silva while a postdoctoral fellow in
Susumu Tonegawa's lab at MIT, initial studies with the α-
CaMKII homozygous mutants helped to establish that α-
CaMKII plays an essential role in synaptic plasticity and
hippocampal learning [3,4]. Subsequent studies using the
heterozygous mutants suggested that α-CaMKII also plays
a key role in cortical plasticity, and in the consolidation of
remote memories [5,6].

In their new study, Miyakawa and colleagues found that
the behavioral phenotype of the α-CaMKII+/- mice is more
complex (and perhaps more abnormal) than previously
appreciated. Perhaps most notably, the α-CaMKII+/- mice
have severe working memory deficits (tested either in a
radial arm maze or delayed alternation task). Working
memory deficits are a core symptom of schizophrenia,
and working memory deficits have been consistently
identified in other mouse models of schizophrenia (most
recently, for example, in mice with mutations in Dis-
rupted-in-schizophrenia-1 [Disc1] [7,8]). Adding to this col-
lection of psychiatric-related behavioral phenotypes,
further analyses revealed that the α-CaMKII+/- mice are
unusually aggressive (killing their cage mates given half a
chance), less anxious and had dramatically disrupted pat-
terns of daily activity.

Because informative endophenotypes need not be
restricted to the behavioral domain, next Miyakawa and
colleagues took a look inside the brains of the α-CaMKII+/

- mice. Their analyses uncovered quite striking changes in
the dentate gyrus of the hippocampus (a brain region that
plays a key role in working memory). The dentate gyrus is
a special place in the brain – it is one of two regions where
new neurons continue to be generated throughout adult-
hood [9]. Miyakawa and colleagues found that this proc-
ess – hippocampal adult neurogenesis – was quite
abnormal in the α-CaMKII+/- mice. While more new neu-
rons appeared to be produced (proliferation was
increased by about 50%), these neurons did not appear to
mature normally – the dentate gyrus of α-CaMKII+/- mice
contained a higher proportion of granule cells with imma-
ture properties (e.g., increased excitability and reduced
dendritic branching and length). This shift in balance
from mature to immature granule cells suggested to Miya-
kawa and colleagues that the α-CaMKII+/- mice have an
immature dentate gyrus.

That changes in the regulation of neurogenesis in the
adult hippocampus are associated with a cluster of behav-
ioral endophenotypes related to schizophrenia in the α-
CaMKII+/- mice is particularly noteworthy. There is
mounting interest in the potential role of adult neurogen-
esis in the pathology of a number of psychiatric illnesses,
including schizophrenia and depression [10]. For exam-
ple, antidepressants may well work by increasing hippoc-
ampal neurogenesis [11] and, while adult neurogenesis
may be unaltered in depressed patients, recent reports
suggest that levels of hippocampal neurogenesis are
reduced in schizophrenic patients [12]. The emerging
hypothesis is that abnormal neurogenesis may contribute
to abnormal hippocampal function [10]. Since the hip-
pocampus is involved in regulation of mood and cogni-
tion, such aberrant hippocampal processing may
cumulatively lead to the sorts of disturbances in thought
and mood found in schizophrenia and depression. This is
an intriguing new hypothesis and, if true, suggests that in
hunting down schizophrenia susceptibility genes it might
make most sense to pay special attention to genes that reg-
ulate neuronal development and/or adult neurogenesis.
In this regard, it is particularly exciting that perhaps the
strongest candidate schizophrenia gene – Disc1 – is impli-
cated in neuronal migration and differentiation [13].
Consistent with this, α-CaMKII itself regulates neuronal
development [14], and the expression of a large number
of genes that have been implicated in neuronal develop-
ment (e.g., genes in the BDNF-MAPK pathway) were dif-
ferentially regulated in the α-CaMKII+/- mice.

A final thought on the approach that Miyakawa and col-
leagues adopted in this study. In exploring gene-function
relationships both forward-genetic (i.e., phenotype →
gene(s)) and reverse-genetic (i.e., gene → phenotype(s))
approaches have traditionally been used [15]. However,
there are limitations associated with both approaches. In
forward-genetic studies (such as ENU mutagenesis
screens) identifying the causative mutation may be an
especially time-consuming and expensive process. Simi-
larly, in reverse-genetic studies (such as those using
knockout mice) it is necessary to have a good idea about
which gene to target and such a priori knowledge may
often be lacking in complex polygenic disorders like schiz-
ophrenia. The strategy used by Miyakawa and colleagues
blurs the boundaries between these two traditional classi-
fications. Indeed, the use this hybrid strategy – a pheno-
typic screen of previously engineered mutant mice – is
particularly powerful since it allows for the rapid associa-
tion of schizophrenia-related endophenotypes with spe-
cific genes. A similar strategy has recently been used to
identify genes for remote memory [16]. By combining the
best of both worlds, Miyakawa and colleagues bring us a
step closer to understanding the molecular basis of schiz-
ophrenia.
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