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Abstract
Background: Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved
serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-
3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they
are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-
3α KO mice by using a well-established battery of behavioral tests together with neurochemical
and neuroanatomical analysis.

Results: Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display
decreased exploratory activity, decreased immobility time and reduced aggressive behavior.
However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and
impaired motor coordination, increased grooming activity, loss of social motivation and novelty;
enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO
mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive
avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly
aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function

Published: 19 November 2009

Molecular Brain 2009, 2:35 doi:10.1186/1756-6606-2-35

Received: 11 September 2009
Accepted: 19 November 2009

This article is available from: http://www.molecularbrain.com/content/2/1/35

© 2009 Kaidanovich-Beilin et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 23
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19925672
http://www.molecularbrain.com/content/2/1/35
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Brain 2009, 2:35 http://www.molecularbrain.com/content/2/1/35
were observed in mutant mice along with a significant decrease of the number and size of Purkinje
cells.

Conclusion: Taken together, these data support a role for the GSK-3α gene in CNS functioning
and possible involvement in the development of psychiatric disorders.

Background
Glycogen synthase kinase-3 is an evolutionary conserved,
ubiquitous serine/threonine protein kinase, belonging to
the CMCG family of the proline-directed kinases (Cyclin-
dependent kinases (CDKs), Mitogen-activated protein
kinases (MAPKs), Glycogen synthase kinases (GSKs), and
CDK-like kinases (CLKs)). The enzyme was first isolated
and purified as an activity capable of phosphorylating and
inhibiting glycogen synthase [1,2]. Two main GSK-3
isoenzymes exist - α and β, which differ in their N- and C-
terminal regions, while being highly homologous within
their kinase domains [3]. The major structural difference
between the two is an amino-terminal, glycine-rich exten-
sion that is present in GSK-3α and the two gene products
share only 36% identity in their last 76 C-terminal resi-
dues [3]. In mammals, both isoforms are ubiquitously
expressed at the RNA and protein level. GSK-3 is abundant
in the brain, both in neurons and glia [4]. Both kinases
have similar substrate specificities, regulating a number of
transcription factors, regulatory enzymes, and structural
proteins [5]. The mechanisms of GSK-3 regulation are not
fully understood; precise control appears to be achieved
by a combination of phosphorylation, localization, and
interactions with GSK-3-binding proteins [6]. Unlike clas-
sical protein kinases, GSK-3 is active under resting condi-
tions and is primarily regulated by inactivation. In recent
years numerous studies have indicated that GSK-3 acts
downstream to suppress the activity of several prominent
pathways such as Wnt signaling, PI-3 kinase and neuro-
trophic pathways [5,7,8]. GSK-3 and some of its substrates
(MAP1B, Tau, presenilin-1, CREB, β-catenin) [9-14] have
been implicated in fundamental brain functions, such as
neurogenesis, development of neuronal tissue, regulation
of synaptogenesis and axonal growth cone collapse
[11,15-17], cytoskeletal stabilization [18-21], cell adhe-
sion [22], energy metabolism [23], synaptic plasticity and
memory formation [24-28], as well as neurotransmitter
signaling [29-31] and circadian rhythms [32,33]. Dysreg-
ulation of GSK-3-substrate-mediated phosphorylation
and associated signaling pathways have been implicated
in the pathogenesis of psychiatric and neurodegenerative
diseases, such as schizophrenia, Alzheimer's disease,
bipolar mood disorder and ADHD [34-38]. Lithium, the
first clinically utilized drug identified to inhibit GSK-3 in
a selective manner [39,40] is widely used to augment
antipsychotic treatment in patients with schizophrenia
[41,42], Alzheimer's Disease [43], Amyotrophic Lateral
Sclerosis [44]; and bipolar mood disorders [45-47].

Several genetic mouse models have been generated to
study the role of GSK-3 isoenzymes. Mice mutant for GSK-
3β die in utero, indicating a critical role of GSK-3β in
embryogenesis as well as illustrating the non-equivalent
roles of the two genes [48,49]. GSK-3β heterozygous mice
are viable, morphologically normal and have been tested
extensively. These mice have been shown to exhibit a lith-
ium-mimetic antidepressant-like state [29,50], reduced
exploratory activity [50] with no changes in total activity,
but reduced responsiveness to amphetamine [29,50], no
change in sensorimotor function [50,51], increased anxi-
ety [51], and reduced aggressive behavior [52]; as well as
normal coordination and balance [50,51]. Kimura et al.
[53] recently showed that GSK-3β+/- mice have retrograde
amnesia and impaired memory reconsolidation. Overex-
pression of GSK-3β reproduces behavioral correlates of
hyperactivity and mania [54]. Selective deletion of both
GSK-3α and β in the developing nervous system (via nes-
tin-Cre mediated excision) results in dramatic hyperpro-
liferation of neuronal progenitors along the entire
rostocaudal extent of the neuraxis; suppressed neurogene-
sis, dysregulation of β-catenin and Notch signaling, and
disruption of polarity [55]. GSK-α S21A, β S9A knock-in
mice have impaired neurogenesis due to a reported defi-
ciency in external support for neural precursor cells [56].
Mice lacking both alleles of GSK-3α are viable and have
improved glucose tolerance, elevated hepatic glycogen
storage and insulin sensitivity [57].

In the present study, we have analyzed the neuronal func-
tion of GSK-3α KO mice at anatomical, histological, bio-
chemical and behavioral levels. To assess the possible
utility of these animals in modeling psychiatric disorders,
the animals were subjected to a comprehensive battery of
behavioral tests. GSK-3α KO mice were evaluated for nov-
elty-induced locomotor activity, responses to open field
situations, stress in the elevated plus maze (EPM) and
light/dark transition test, social affiliation/novelty, forced
swim and tail suspension tests, sensorimotor gating abil-
ity by prepulse inhibition of acoustic startle response
(PPI/ASR), attention-related processes in the latent inhibi-
tion (LI) and learning/memory in the fear conditioning
(FC) and passive avoidance paradigms. We found several
behavioral anomalies in GSK-3α-/- animals which were
similar to the previously characterized GSK-3β+/- mice.
However increased sensitivity to aversive cues, decreased
sociability, impaired associative memory and abnormal
cerebellar functions were additionally and specifically
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observed in GSK-3α-/- mutants along with brain physio-
logical differences. These findings reveal for the first time
the potential role of GSK-3α in CNS function and patho-
genesis of psychiatric disorders.

Methods
Animals and experimental design
Except where indicated, animals were housed at the
Toronto Centre for Phenogenomics (TCP). GSK-3α null
(KO) mutants and their wild-type (WT) littermates, were
generated as previously described [57]. GSK-3α KO mice
were 6 generations backcrossed to C57BL/6 mice. GSK-3α
mice were mated heterozygously and at weaning, litterma-
tes of mixed genotypes were housed by gender in groups
of 3 to 5 per cage under a 12 hour light/dark cycle (lights
on at 07.00) with ad libitum food (Purina mouse chow)
and water. GSK-3α male and female mice were tested at 2-
6 months of age. Behavioral testing was conducted
between 09.00 and 18.00 hours. Experimenters were
blind to genotype, which was determined after data col-
lection. Between subjects and after all tests, all apparatus
was cleaned with Clidox and 70% ethanol to prevent bias
due to olfactory cues. We used 6 independent groups of
KO and WT littermate control mice for behavioral tests.
All behavioral testing procedures were initiated from less-
stressful to more aversive, where each test was separated
from each other by 2 days at least. Prior to all experiments,
mice were left undisturbed in the room for 30 min to
allow acclimation. The sequence of experiments for the
first three sets of animals was: elevated plus maze (EPM),
open field (OF), social interaction, startle response/pre-
pulse inhibition (PPI), forced swim test (FST). The fourth
set comprised: olfactory bulb test, resident intruder (RI).
The fifth group: tail-flick, latent inhibition (LI). Sixth
group: olfactory bulb test, tail suspension test (TST), fear
conditioning (FC). In addition, six independent sets of
naïve mice were used once for separate procedures: 1)
MRI; 2) HPLC; 3) Basal and stress-induced corticosteroid
measurements; 4) histological studies (Calbindin stain-
ing); 5) rotarod; 6) light/dark transition test, passive
avoidance experiments. The latter tests were performed in
Center for Genetic Analysis of Behavior, National Institute
for Physiological Sciences, Okazaki, Japan using mice
shipped from Toronto. In Okazaki (NIPS), only male
mice that were single housed were used. Animals were 8-
9 month old when tests were conducted. Data collection
for most behavioral tests (except where noted) was per-
formed by OBSERVER 5.0 software (Noldus Information
Technology, Wageningen, the Netherlands). All proce-
dures involving animals were approved by the Animal
Care and Use Committee of TCP and were conducted in
accordance with the requirements of the Province of
Ontario Animals for Research Act 1971 and the Canadian
Council on Animal Care. The animal research protocol

used in Okazaki (NIPS) was approved by the Institutional
Animal Care and Use committee of National Institute for
Physiological Sciences.

Behavioral tests
Elevated plus maze (EPM)
Experiments were conducted in a dimly lit room with a
light intensity on the central platform of 210 lux [58].
During a 5-min observation period, the number of entries
(defined as four paws into an arm) and the amount of
time spent in open arm, closed arm and the central plat-
form were scored by the observer. The total number of
entries for each subject was collected. These data are pre-
sented as percentage time spent in closed or open arm/
total duration of experiment ×100.

Light/dark transition test
This test was conducted as previously described [59,60].
The apparatus consisted of a cage (21 cm × 42 cm × 25
cm) divided into two sections of equal size by a partition
containing a door (O'Hara & Co., Tokyo, Japan). One
chamber was brightly illuminated (390 lux), whereas the
other chamber was dark (2 lux). Mice were placed into the
dark side and allowed to move freely between the two
chambers with the door open for 10 min. The total
number of transitions between chambers, time spent in
each side, first latency to enter the light side and distance
traveled were recorded automatically.

New environment test
The activity cage consisted of a cubical box (Versa Max sys-
tem) with a floor equipped with horizontal and vertical
infrared sensors. Each mouse was placed individually into
the center of the activity cage for 5 min (as described in
[61]) and the following behavioral measures recorded:
(1) latency (seconds) to first escape from the center; (2)
length of time of immobility periods (seconds); (3) time
spent self grooming (seconds); (4) number of risk assess-
ment behaviors involving the mouse stretching its body
from corners/wall toward the center; (5) horizontal and
(6) vertical activity. Exploratory activity and walking were
recorded separately for the central and peripheral field of
the open arena and the ratio between central and periph-
eral activity was calculated.

Open field test
The activity cage was similar to that used for the new envi-
ronment test with a floor equipped with horizontal and
vertical infrared sensors. The chamber of the test was illu-
minated at 100 lux. Each mouse was placed individually
into the center of the activity cage and motor activity
measured by counting the number of horizontal and ver-
tical beam breaks during the 30 min testing period.
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Prepulse inhibition (PPI) of acoustic startle response
PPI testing was conducted in four foam-lined (sound
damping) isolation chambers (Med. Associates Inc., Star-
tle Reflex System, St Albans, VT). All events were recorded
and controlled by Med Associates software (Startle Reflex
package). During the test, the animal was confined to the
holder. Background noise was set at 65 dB. Five types of
trials were used. Pulse alone trials (P) consisted of a single
white noise burst (120 dB, 40 ms). The prepulse + pulse
trials (PP69P, PP73P, PP81P) consisting of a prepulse of
noise (20 ms at 69, 73, or 81 dB, respectively) followed
100 ms after prepulse onset by a startling pulse (120 dB,
40 ms). No-stimulus (NS) trials consisted of background
noise only. Sessions were structured as follows: (1) 15-
min acclimation at background noise level; (2) five P tri-
als; (3) 10 blocks each containing all five trials (P, PP69P,
PP73P, PP81P, NS) in pseudorandom order; and (4) five
P trials. Intertrials intervals were distributed between 12
and 30 s. The force intensity for each trial was recorded as
the startle level. The percentage PPI induced by each pre-
pulse intensity was calculated as [1-(startle amplitude on
prepulse trial)/(startle amplitude on pulse alone)] ×
100%. Startle amplitude in this formula was calculated as
the average response to all of the pulse alone trials, exclud-
ing the first and last blocks of five pulse alone trials.

Latent inhibition (LI)
The LI procedure was used as previously described [62].
All events were programmed by the MED-PC software.
Before the beginning of each LI experiment, mice were
weighed and water was removed from the cages for 24 h.
They were then trained to drink in the experimental cham-
ber for 5 days, 15 min per day (training period). Body
weights were monitored daily throughout all behavioral
testing and maintained at no lower than 80% of the initial
body weight. For each daily training session, mice were
acclimated to the chamber without access to the sipper
tube for 5 min then the guillotine door was opened.
Latency to the first lick and number of licks were recorded
for 15 min. The LI procedure was conducted on days 6-9
and consisted of the following stages:

Pre-exposure
The PE (pre-exposure) mice received 40 white noise pres-
entations with an interstimulus interval of 60 s. The NPE
(non pre-exposure) mice were confined to the chamber
for an identical period of time without receiving the stim-
uli.

Conditioning
All mice received conditioning to the noise stimulus. To
estimate baseline performance 2 noise-shock pairings
were used and 4 noise-shock pairings were used to disrupt
LI in order to estimate ability of gene to facilitate LI. Five
minutes after the start of the session, a 10-s white noise

was followed by a 1-s 0.37 mA foot shock. The noise-
shock pairings were given 5 min apart. After the last pair-
ing, mice were left in the experimental chamber for an
additional 5 min. Mice received 15 min access to water in
their home cages after pre-exposure and conditioning ses-
sions.

Lick retraining
Mice were given a 15-min drinking session as during the
training period. Data from mice that failed to complete
100 licks were dropped from the analysis.

Test
Each mouse was placed in the chamber with access to the
sipper tube. When the mouse completed 75 licks the noise
was presented and lasted until the mouse reached lick
101. The following times were recorded: Time to first lick,
time to complete licks 50-75 (before noise onset; A
period), and time to complete licks 76-101 (after noise
onset; B period). Degree of lick suppression was calcu-
lated as a suppression ratio A/(A + B). A lower suppression
score indicates a stronger suppression of drinking. LI con-
sists of lower suppression of drinking (higher suppression
ratio) in the pre-exposed compared to the non-pre-
exposed mice.

Contextual and cued Pavlovian fear conditioning (FC)
Fear-conditioning evaluation was performed in a sound-
attenuated chamber (Med Associates, St. Albans, VT)
equipped with a computer-controlled fear conditioning
system (Actimetrics, Wilmette, IL). Freezing behavior,
defined as the complete absence of any movement except
for respiration and heartbeat, was measured during the
context and cued conditioning tests at 0.25 second inter-
vals by using FreezeFrame automated fear conditioning
software (ACTIMETRICS software, FREEZEFRAME v.
1.6e). Tests subjects were removed from their home cage
and allowed to explore for 2 min. Conditioning consisted
of a single pairing of an auditory cue (3600 Hz, 80 dB)
with a foot shock (1 mV scrambled). The auditory cue was
present 2 min after the training session started and was 30
seconds in duration. The foot shock was delivered contin-
uously during the last 2 seconds of the auditory cue. The
subject was removed from the chamber 30 seconds later
and returned to its home cage. Approximately 24 h later,
each subject was returned to the test chamber and moni-
tored for 5 min. Two hours later, the context was altered
and each subject was placed into the altered chamber and
allowed 3 min for exploration, after which the auditory
tone cue of 3 min was delivered.

Passive avoidance test
Passive avoidance test was assessed in a two-compartment
box with a shock grid (O'Hara & Co., Tokyo, Japan) [63].
This task allows measurement of avoidance behavior and
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learning abilities in mice. The box consisted of a bright
compartment and a dark compartment, separated by a
guillotine door. After 30 min adaptation to an experimen-
tal room, the subject was placed in the light part, and
latency to enter the dark compartment was measured. On
entry into the dark compartment, the door was closed and
a 3 s footshock (0.3 mA) was applied. The mouse was then
removed from the box and placed in its home cage.
Twenty-four hours later, the mouse was again placed in
the light box and latency to enter the dark compartment
was measured. The retention test was performed 35 days
after second test.

Forced swim test
The protocol was performed as described by Cryan et al.
[64]. The mice were released individually into a transpar-
ent plastic cylinder (25 cm height, 18 cm diameter),
which contained water at 25°C to the depth of 18 cm. The
experiment lasted 6 min, and an observer scored the fol-
lowing parameters in the last 4 min of the trial: (1) active
swimming (including crossing the quadrants of the con-
tainer) and (2) floating (no limb movement and making
only minimal movements to keep the head above the
water). Each mouse was allowed to dry after the test, and
the water was changed between subjects.

Tail suspension test
This procedure was followed as previously described by
Steru et al. [65]. Scotch tape pasted to the tip of the tail (~1
cm) was used to securely fasten the mice to a flat wooden
surface located 50 cm above the ground. Active hanging
and immobility, defined by presence or absence of limb
movement, were recorded over a 6 min period.

Accelerating rotarod
For this experiment, an Economex Rotarod apparatus was
used (Columbus Instruments, Columbus, OH, USA). The
original 3 cm ribbed plastic rotating axle was divided into
four adjustable flanges, which enabled testing a maxi-
mum of four mice simultaneously. The rod is suspended
at a height of 30 cm above the plastic surface. Mice are
placed on top of the rod, facing away from the experi-
menter. In this orientation, forward locomotion opposite
to rotation of the rod is necessary to avoid falling. During
the stationary mode, each mouse was first observed for 10
seconds without any rotation. The axle was then adjusted
for a constant motor speed of 5 r.p.m., and each mouse
observed for a total of 10 seconds (fixed speed mode).
Next, beginning at 5 r.p.m., the rotation gradually
increased in increments of 0.1 r.p.m. per second and the
latency to fall off the axle was recorded in seconds for each
mouse for the maximum period of 300 seconds (acceler-
ating speed mode). The mean latency was then calculated
by averaging the latency for three consecutive trials [66].
The stationary and fixed speed mode sessions were train-

ing periods and allowed the animals to become accus-
tomed to the apparatus. Impaired performance in these
sessions served as early indicators of abnormality. The
accelerated Rotarod procedure was repeated for 3 consti-
tutive days by 3 trials per day to measure motor learning.

Crawley's sociability and preference for social novelty test
Two identical transparent Perspex cylinders (each 8 cm
diameter, 13 cm tall) with removable, black Perspex lids
stood vertically inside the apparatus, one in each side
chamber. Each cylinder was perforated with multiple
holes (1 cm diameter) to allow for air exchange between
the interior and exterior of the cylinder. Briefly, the subject
mouse was first placed at the center of the middle cham-
ber. After a 5 min adaptation period in which the subject
was free to explore each chamber, an unfamiliar mouse
(male C57BL/6J, "stranger 1") was placed inside a cylin-
der in one of the side chambers. Containing the stranger
mouse in the cylinder ensures that social approaches were
initiated by the subject mouse and was investigatory only,
without direct physical contact. Time spent by the test
mouse in each side chamber was recorded over a 10-min
period, to estimate social novelty and motivation (session
I). Another unfamiliar mouse ("stranger 2") was then
placed inside an identical cylinder in the opposite side
chamber, and the activity of the test mouse was likewise
recorded for a further 10 min, to evaluate social memory
(session II). The test mouse was considered to be in the
chamber when its head and two front paws entered the
chamber.

Resident-intruder test
Aggression was assessed using the resident-intruder test in
isolated male mice, essentially as previously described
[67]. Males were housed individually for 4 weeks before
assessment, which was performed over three sessions in
the same day. Intruders (unfamiliar socially housed
C57BL/6J male mice, age and weight matched with each
resident) were individually placed in the resident home
cage for a 10-min test session and observation was started.
The latency, duration and number of events were recorded
as: aggressive behavior (contact between the resident and
the intruder such as biting or wrestling and aggressive
grooming of partner) or social interest behavior (follow-
ing and sniffing of partner). A different intruder animal
was used for each resident. Animals that did not attack the
intruder were given an attack latency of 10 min.

Measurement of brain monoamines and their metabolites
Levels of catecholamine neurotransmitters and their
metabolites, including dopamine (DA), 4-hydroxy-3-
methoxyphenylacetic acid (HVA), norepinephrine (NE),
normetanephrine (NM), serotonin (5-HT) and 5-hydrox-
yindoleacetic acid (5-HIAA), were quantified by HPLC
with electrochemical detection. Analyses were performed
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on a system consisting of a Thermo Separation Products
(TSP) P4000 pump, a TSP AS3000 autosampler with cool-
ing unit, an ESA Coulochem II electrochemical detector
(ESA 5011A Analytical Cell and 5020 Guard Cell) and a
Spectra Physics 4290 Integrator connected to a PC run-
ning TSP WOW chromatography software. The mobile
phase, an aqueous mixture of 0.098 M glacial acetic acid,
0.09 M sodium acetate (pH 3.7), 0.118 mM EDTA, 8%
methanol and 0.8 mM octane sulphonate was delivered at
a flow rate of 0.8 ml/min. Separation of the 100 μl sam-
ples was performed on an ACE 250 × 4.6 mm column
with Ace C18, 5 μm stationary phase. Peak heights
recorded at E2 were detected using electrode potentials as
follows (Guard cell +450 mV: Analytical cell E1+100 mV;
E2 -400 mV). Quantification of monoamines was per-
formed on 0.1 N perchloric acid extracts in a procedure
involving two 30 min. runs per sample. An appropriately
diluted sample was run followed by a second run consist-
ing of 1/2 sample and 1/2 standard cocktail (pure
monoamines and metabolites in concentrations of 10 pg/
μl). Monoamine and metabolite levels in ng/mg tissue
wet weight were then calculated.

Magnetic resonance imaging
Mice and brain sample preparation
GSK-3α KO mice (n = 9) and their WT litter mates (n = 9)
were anesthetized at 9-10 weeks of age with a combina-
tion of Ketamine (Pfizer, Kirkland, QC) (100 mg/kg) and
Rompun (Bayer Inc., Toronto, ON) (20 mg/kg) via intra-
peritoneal injection. One wild type brain sample was
excluded from the study due to sample preparation arti-
facts. A previously described sample preparation protocol
for scanning was used [68]. Thoracic cavities were
exposed, and the animals were perfused through the left
ventricle with 30 ml of phosphate-buffered saline (PBS)
(pH 7.4) containing 2 mM ProHance® (gadoteridol,
Bracco Diagnostics Inc., Princeton, NJ) contrast agent
solution at room temperature (25°C) at a rate of approx-
imately 1.0 ml/min. This was followed by infusion with
30 ml of iced 4% paraformaldehyde (PFA) in PBS contain-
ing 2 mM ProHance® at the same rate. Following per-
fusion, the heads were removed along with the skin, lower
jaw, ears and the cartilaginous nose tip. The remaining
skull structures were allowed to postfix in 4% PFA con-
taining 2 mM ProHance® at 4°C for 12 h. The skulls were
transferred to a PBS and 0.02% sodium azide and 2 mM
ProHance® solution at 4°C on a rotator platform until
they were scanned.

Imaging
A multi-channel 7.0 Tesla MRI scanner (Varian Inc., Palo
Alto, CA) [69] with a 6 cm inner bore diameter insert gra-
dient set was used to acquire anatomical images of brains
within skulls. Prior to imaging, the samples were removed
from the contrast agent solution, blotted and placed into

13 mm diameter plastic tubes filled with a proton-free
susceptibility-matching fluid (Fluorinert FC-77, 3 M
Corp., St. Paul, MN). Three custom-built, 14 mm diame-
ter solenoid coils with a length of 18.3 mm and over
wound ends were used to image three brains in parallel.
Parameters used in the scans were optimized for image
efficiency and grey/white matter contrast: a T2-weighted,
3D fast spin-echo sequence, with TR/TE = 325/32 ms, four
averages, field-of-view 14 × 14 × 25 mm and matrix size =
432 × 432 × 780 giving an image with 32 μm isotropic
voxels. Total imaging time was 11.3 hours.

Image Processing
The 32 μm isotropic resolution T2-weighted MRI scans
were non-linearly aligned to a 3D atlas of the mouse brain
with 62 structures identified [70]. This process consisted
of an initial step in which all of the MRI scans were non-
linearly aligned to each other using an unbiased group-
wise registration algorithm [71]. Briefly, rigid body regis-
tration was carried out towards a preexisting image based
on the same mouse strain. All possible pair-wise 12-
parameter registrations were then carried out to create an
unbiased linear average model of the entire data set. All
images were subsequently non-linearly aligned towards
the 12-parameter average. The resulting registered MRIs
were resampled and averaged [71,72]. This iterative proce-
dure was repeated for an additional five generations with
ever finer deformation grid-point spacing. The end-result
is to have all 18 scans deformed into exact alignment with
each other in an unbiased fashion. This allows for the
analysis of the deformations needed to take each mouse's
anatomy into this final atlas space, the goal being to
model how the deformation fields relate to genotype.
Correspondence with the 3D atlas was obtained by non-
linear alignment of the final stage average MRI with the
40-mouse average MRI upon which the atlas is based [70].

Analysis
Local differences in brain shape related to genotype were
assessed by analysis of the deformation fields [73,74]. To
reduce random noise and assure normality under the cen-
tral limit theorem, the transformation data was blurred
prior to analysis with a Gaussian kernel with a full width
at half maximum of 1 mm, and the logarithm of the Jaco-
bian was computed for univariate statistical comparison
at every image point. This statistical analysis results in mil-
lions of separate statistical tests. In order to account for an
inflated type I error, the False Discovery Rate (FDR) tech-
nique was applied [75] with a 10% FDR threshold. The
threshold corresponded to an uncorrected P-value of
0.0024. The interpretation of these results is that, on aver-
age, 10% of the voxels shown as significant will be false
positives. The volume for each anatomical structure
defined in the atlas was computed for each mouse by inte-
grating the Jacobian of the transformation mapping the
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atlas image to the image for that mouse. This procedure
has previously been shown to provide volume estimates
comparable to those obtained by standard stereological
methods using tissue sections [76].

Immunohistochemistry
To detect Purkinje cells, Calbindin immunohistochemis-
try was performed on sections of the cerebellum. Eight-
week old KO and their WT littermate controls (n = 3 of
each) were sacrificed and brains were removed and putt
into 4% PFA. Paraffin-embedded coronal sections of cere-
bellum were deparaffinized with xylene, rehydrated in
graduated ethanols, and then washed in phosphate-buff-
ered saline. After citrate buffer antigen retrieval, the
endogenous peroxidase activity was quenched by incubat-
ing the sections in 0.3% hydrogen peroxide for 30 min.
Sections were blocked with Universal Blocking Buffer
(Daco) for 10 min, following overnight incubation with
specific antibodies against Calbindin antibody (1:200;
Cell Signaling Technologies). Then tissues were incubated
with biotinylated anti-rabbit IgG (Vector) for 1 h at room
temperature, following incubation with Vestatin ABC
solution. POD reaction was done by using DAB substrate
(Vector). Counterstaining was performed with hematoxy-
lin.

Images were digitally captured by a 12-megapixel Olym-
pus DP71 camera for analysis. The cell density was ana-
lyzed by measuring the number of Purkinje cells per cell
layer (linear density) using Metamorph software (Univer-
sal Imaging Corporation). For morphological analysis of
Purkinje cells, the long axis of cell body was measured and
taken as an indicator of cell size. All analysis were per-
formed blind to the animals used. Results are reported as
mean and S.E.M. Statistical significance was determined
by Kolmogorov-Smivnov test and defined at P < 0.05.

Corticosteroid measurement
Corticosteroid levels were measured in 10-week old KO (n
= 19) and littermate WT (n = 12) control animals (both
genders). Blood samples were taken in the morning (9.00
am) and evening (6.00 pm). Stress-induced corticosteroid
levels were evaluated in blood samples from mice before
and after physical restraint. Briefly, each mouse was indi-
vidually placed in a plastic film decapicone (Braintree sci-
entific inc., Braintree, MA, USA) for 30 min in a
horizontal position. The animals were capable of breath-
ing through the breathing hole at the smaller end and
were immobilized without being squeezed. The larger end
was tightly closed with a paper clip. All the subjects were
checked to prevent suffocation. Serum concentrations of
corticosteroids were measured using a commercially avail-
able Corticosterone 125I RIA kit (MP Biomedicals, USA),
kindly provided by Dr. Daniel Drucker (SLRI).

Tail flick test
Antinociceptive effects of the test substances were deter-
mined by the hot tail-flick method described by Sewell
and Spencer [77]. One to two cm of the tail of a mouse
was immersed in warm water kept at 50°C. The reaction
time was the time taken by the mice to deflect their tails.
The first reading is discarded and the reaction time was
taken as a mean of the next two readings. The latent
period of the tail-flick response was taken as the index of
antinociception.

Olfactory test
Mice were first habituated to the food (Bud's Best Cookies,
Hoover, AL, USA) by the experimenter leaving food pel-
lets (1 × 1 × 0.5 cm) in the home cage overnight. The next
day, rodent food pellets were removed from the home
cage, and the mice were food deprived for 24 hr. The test
was conducted in a standard polycarbonate cage (30 × 17
× 12 cm). A piece of chow was placed in a randomly cho-
sen area on the cage floor and then the entire cage floor
was covered with corncob bedding to a depth of 2.5 cm.
The subject was then placed into the cage and latency to
find the food was recorded up to a maximum time limit
of 15 min.

Brain weight
For wet brain weight determination of KO and WT mice
(n = 25 in each group) at 24 weeks old were sacrificed. The
entire brain with olfactory bulbs and cerebellum were
weighted.

Statistical analysis
Data were analyzed by two-tailed t tests for independent
samples; two- and three-way ANOVAs followed by Fisher
least significance difference (LSD) post-hoc test. PPI was
analyzed by two-way ANOVA with gene and gender as a
between-subjects factors, and prepulse intensity as a
repeated measurement factor. Latent Inhibition was by
two-way ANOVAs with main factors of pre-exposure
(0,40) and genotype (WT; GSK-3α KO). Values in figures
are expressed as Mean ± S.E.M.

Results
To address the effect of GSK-3α gene deficiency on behav-
ior, we subjected GSK-3α KO mice and their wild-type lit-
termates to a battery of well-established behavioral tests.

Increased emotionality in GSK-3  female knockout mice
The elevated plus maze (EPM) is a widely used test to
measure anxiety-like behavior. The number of entries into
the open arms and the time spent in the open arms are
used as indices of open space-induced stress in mice [58].
GSK-3α KO females spent significantly more time in the
closed arms and less in the open arms of EPM than WT lit-
Page 7 of 23
(page number not for citation purposes)



Molecular Brain 2009, 2:35 http://www.molecularbrain.com/content/2/1/35
termates, suggesting increased stress behaviors in the KO
females (Table 1). However, KO males in EPM behaved
similarly to WT animals. Innate avoidance of the bright
environment was measured by using an automated light/
dark transition test. The number of transitions, distance
traveled and latency to light in the light/dark transition
test of GSK-3α KO males were all similar to WT littermate
controls (Figure 1), confirming normal behavior of GSK-
3α KO males in tests associated with increased stress.

To estimate emotional responsiveness in both groups,
mice were subjected to a bright open-field arena (~200
lux) in a dim testing room for 5 minutes. GSK-3α KO ani-
mals of both genders showed a significant increase in
freezing and grooming behavior (Table 2), indicating ele-
vated instinctive behaviours in these animals compared
with their littermate controls.

Reduced depression-associated behaviors in GSK-3  
knockout mice
In the forced swim test (FST), rodents are placed in an
inescapable cylinder partially filled with water, and the
time spent immobile is measured over a short time win-
dow [78]; this test is a well-established paradigm for
assessing motivational behaviors in rodents [79] and is
used to predict antidepressant drug efficacy in both mice
and rats [78]. Mice will generally swim in the water but
after a while will stop swimming and float on the surface

of the water, appearing to have given up trying to find
solid ground. The duration of immobile floating on the
surface of the water was decreased in GSK-3 mutants com-
pared with WT littermates (Figure 2A). This finding was
confirmed using a tail suspension test (TST) - a second
paradigm commonly used to evaluate effects of antide-
pressants in rodents [65,79]. Mice are suspended by their
tails for six minutes, during which time both activity and
immobility are measured. Immobility time was signifi-
cantly reduced for GSK-3α KO mice (Figure 2B).

Changes in general activity can affect animal behavior in
FST and TST [79,80]. Locomotor activity in response to a
novel environment was monitored in the open field.
Compared to WT littermates, GSK-3α KO mice displayed
reduced horizontal and vertical activity throughout the 30
minutes of the test period, indicating decreased locomo-
tion and exploratory behavior in KO vs. WT animals (Fig-
ure 2C-D). Since the FST involves exposure to water, it
increases stress in the animals as the animals prefer to
avoid immersion. Stress stimulates the hypothalamus-
pituitary-adrenal (HPA) axis, resulting in elevation of cor-
ticosteroid hormones. To determine whether the HPA
response to stress was altered in GSK-3α KO mice, basal
and stress-induced levels of corticosteroid (CORT) hor-
mones were measured (Figure 2E). To check the status of
basal levels of CORT in GSK-3α KO animals and their lit-
termate controls, morning and evening measurements

Table 1: Analysis of anxiety-like behavior in GSK-3α female KO mice

Parameters (Number) WT (n = 7) females KO (n = 9) females WT (n = 14) males KO (n = 13) males

Passages (n) 1.57 ± 0.94 3.11 ± 1.56 0.42 ± 0.23 1.23 ± 0.52

Risk assessment (n) 3 ± 1.1 5 ± 1.21 4.57 ± 0.75 4.23 ± 0.58

Head dips (n) 10 ± 2.1 7.44 ± 1.16 9.71 ± 1.93 11.54 ± 1.7

Total number 58.14 ± 4.37 59.67 ± 3.2 54.21 ± 3.64 59 ± 4.64

Open (%) 16.56 ± 2.8 10.91 ± 2.67 12.39 ± 2.6 15.51 ± 2.16

Centre (%) 46.55 ± 1.34 45.18 ± 0.69 45.37 ± 0.98 44.31 ± 1.28

Closed (%) 36.89 ± 2.78 43.91 ± 2.62 42.24 ± 2.34 40.17 ± 2.14

Parameters (Time) WT (n = 7) females KO (n = 9) females WT (n = 14) males KO (n = 13) males

Open (%) 5.5 ± 1.18 2.62 ± 0.81 * 4.47 ± 1.04 5.7 ± 1.2

Centre (%) 25.11 ± 2.21 20.08 ± 1.68 21.39 ± 1.43 20.26 ± 1.72

Closed (%) 69.38 ± 3.14 77.3 ± 2.26 * 74.13 ± 1.78 74.04 ± 2.5

In the elevated plus maze, GSK-3α KO females (n = 9) showed significant increases in the percentage of the time spent in closed arms and 
decreases in the % of the time spent in the open arms compared with WT females (n = 7) in EPM. Values are mean (± SEM). *p ≤ 0.05.
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were taken. Basal CORT levels were significantly decreased
in KO animals compared with WT in the morning as well
as in the evening. After being subjected to restraint-
induced stress, blood CORT concentrations increased and
reached similar elevated levels in both groups (Figure 2E).
These data indicate that GSK-3α KO mice have enhanced
basal reactivity to stressful situations.

Decreased social interaction and aggression in GSK-3  
knockout mice
Sociability and social novelty were estimated using two
phases of social interaction tests (session I and session II).
Unlike wild-type mice, GSK-3α mutants did not prefer the
chamber containing an unfamiliar mouse (stranger 1)
over an empty chamber in session I (Figure 3A). In addi-
tion, KO males did not favor the chamber containing a
newly introduced mouse (stranger 2) over a chamber con-
taining a now familiar mouse (stranger 1) in session II.
Indifferent behavior of KO mice in this test is indicative of
decreased social motivation and novelty (Figure 3A).

GSK-3α KO mice showed a significant decrease in dura-
tion of fighting and aggressive grooming and sniffing of
the unknown intruder mouse compared with WT mice
(Figure 3B). The time spent by GSK-3α KO males either
freezing or running away from the opponent was
increased vs. WT (Figure 3B). These findings indicate
reduced aggression-like behavior in GSK-3α KO animals.

The lower social interaction and aggressive behavior of
GSK-3α KO mice was not a result of diminished olfaction,
as we found that the time required to find buried food in
an olfactory test was not significantly different between
the genotypes (Figure 3C).

Altered information processing in GSK-3  knockout mice
Prepulse inhibition (PPI) and latent inhibition (LI) are
the most common methods to quantify information
processing in both humans and mice [81]. Sensorimotor
gating is the process by which inhibitory neural pathways
filter multiple stimuli and allow attention to be focused
on one stimulus [82]. Sensorimotor gating can be meas-
ured by prepulse inhibition of startle, which is the modu-
lation of the startle response by a weak prepulse [83]. The
acoustic startle reflex is a simple neural circuit, involving
approximately five synapses [84], and prepulse modifica-
tion of this circuit has been postulated to arise from
diverse cortical, midbrain, and hindbrain centers [85]. PPI
is defined as the degree (%) to which the acoustic startle
response is reduced when the startle-eliciting stimulus is
preceded by a brief, low intensity, non-eliciting stimulus
[86].

GSK-3α KO mice were tested for sensorimotor gating def-
icits in the prepulse inhibition test (Figure 4A-B). We
found that GSK-3α KO mice have facilitated PPI at the
lowest prepulse (69 dB) in KO females vs. WT and at 69
and 81 dB in KO males vs. WT (Figure 4A). The amplitude
of the acoustic startle response was similar between KO
and WT, however, a gender effect on ASR was observed
(Figure 4B).

Latent inhibition refers to the phenomenon by which pre-
exposure to stimuli (such as tones) retards subsequent
conditioning to the same stimulus. The reduced condi-
tioning is believed to result from attention filtering so that
decreased attention is given to a familiar stimulus that the
animal has learned to ignore during pre-exposure [87].
WT mice that were pre-exposed (PE) to the tone showed
less freezing to the tone on the test day compared to non
pre-exposed (NPE) animals (Figure 4C), indicating signif-
icant latent inhibition in control mice. The suppression
ratio of pre-exposed GSK-3α KO mice was similar to that
of non-exposed GSK-3α KO mice (Figure 4C), suggesting
a deficit of the GSK-3α null mutant in latent inhibition.

Long-term memory function in GSK-3  null mice
Recently, GSK-3 has been reported to be involved in syn-
aptic plasticity [24-27] and memory reconsolidation [53].
To examine whether the loss of GSK-3α was associated
with cognitive deficits, we assessed memory and learning
in GSK-3α KO mice in a Pavlovian fear conditioning par-
adigm as well as in a passive avoidance test (Figure 5).

GSK-3α male KO mice display no differences in light/dark transition testsFigure 1
GSK-3α male KO mice display no differences in light/
dark transition tests. In the light/dark transition test, GSK-
3α KO (n = 15) and WT (n = 24) males were placed individ-
ually in the dark compartment at the start of the test. Data 
are given as mean (± SEM). A. Distance traveled (cm) in the 
light and dark sides. B. Time (sec) the mice stayed in the light 
side. C. Number of transitions between the light and dark 
sides. D. Latency time (sec) before the first entry into the 
light side. p.value ≥ 0.12 (n.s.)
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GSK-3α KO mice showed similar freezing times in
response to the unconditioning stimulus (US) compared
to their littermate controls (baseline in Figure 5A and 5B).
Memory performance in KO and WT groups was exam-
ined 24 hours after exposure to the US, by measuring
freezing time (Figure 5). In the following trial (using the
same chamber as used in the previous conditioning, with-
out the sound), the learning freezing response of GSK-3α
KO-context group was decreased (Figure 5A). In the cued
trial (placing the mice into a different shape of chamber
from that used for the conditioning, but with the presence
of sound as was used for the conditioning), the GSK-3α
KO-cue group showed a decreased level of freezing com-
pare to WT, suggesting that GSK-3α mutant animals have
an impaired ability to form and consolidate memory (Fig-
ure 5B). The decreased percent of freezing of GSK-3α KO
mice in the FC test was not a result of diminished sensitiv-
ity, as we found that the latency in the tail flick test was
not significantly different between the genotypes (Figure
5C).

However, no difference was found in the passive avoid-
ance test (Figure 5D) between KO and WT groups; sug-
gesting that the learning ability of KO was similar to WT
and the behavior of the mutant group in the FC test might
be interpreted as active avoidance of a fear-related situa-
tion leading to them freezing less than WT animals.

Neurochemistry
To investigate whether altered levels of monoamines
could contribute to some of the social, cognitive and
memory deficits observed in GSK-3α KO mice, levels of
catecholamines and their metabolites were measured
using HPLC-electrochemical detection (Table 3). Slight
but significant decreases were observed in the levels of
HVA (in PFC) and NE (in hippocampus). However, the
level of NM was increased in the amygdala (Table 3).

Analysis of striatum revealed no significant alterations
between genotypes in the profile of monoamines (Table
3).

Neuroanatomical and histological examination of the 
brain
We examined 9-10 week old GSK-3α mice for structural
brain abnormalities using very high resolution MRI com-
bined with computer modeling (Figure 6). Analysis by
MRI revealed no overall brain size difference. We used a
statistical map of the Jacobian determinant that illustrates
the expansion and contraction of tissue based on geno-
type, to find regions of significant change. In order to
account for an inflated amount of false positive findings
due to the number of statistical tests employed, the FDR
technique was applied with a 10% FDR threshold. The
arbor vita of the cerebellum of the GSK-3α knockout mice
was observed to be significantly enlarged by 9% com-
pared to wild type mice (Figure 6). The mean volume was
12.8 ± 0.55 mm3 in the knock out animals and 11.7 ± 0.4
mm3 in wild types. The pons was found to be significantly
larger by 5% in the knock out animals. Mean volume was
18.1 ± 0.67 mm3 in the knock outs and 17.2 ± 0.4 mm3 in
wild type samples (Figure 6). Slightly increased volume of
medulla oblongata was observed in KO (24.48 mm3) vs
WT (23.65 mm3) mice (Figure 6). Small regions of signif-
icantly expanded voxels were also found in the cerebellar
cortex, the cerebral aquaduct, the cerebral cortex, the cere-
bellar peduncle, the left striatum and the right olfactory
bulb, as well as a small region of significantly contracted
voxels in the parieto-temporal lobe of the cerebral cortex.
No gender related differences were found.

Brain weight analysis of 6 months old animals revealed
slightly but significantly increased brain weight of KO
males and females compared with their littermate con-
trols (Figure 7A). Thus, structural changes (especially in

Table 2: Differential behavior of GSK-3α KO mice in the open field test

Parameters (Time, sec) WT female (n = 7) KO female (n = 8) WT male (n = 13) KO male (n = 13)

Freezing 2.64 ± 2.4 19.07 ± 5.13 * 3.15 ± 1.18 21.47 ± 4.94 * * 
Grooming 3.87 ± 0.92 13.4 ± 3.6 * 8.52 ± 2.68 18.52 ± 2.68 * *
Rearing Wall 40.87 ± 4.62 33.31 ± 4.4 35.72 ± 4.14 34.02 ± 5.1
Rearing Open 5.16 ± 2.44 1.67 ± 0.58 4.97 ± 1.41 1.32 ± 0.74 *
Activity Wall 253.21 ± 5.78 241.47 ± 5.7 162.09 ± 29.54 172.47 ± 31.45
Activity Centre 19.39 ± 3.86 12.91 ± 2.12 99.8 ± 28.01 75.76 ± 27.76
Parameters (Number) WT female (n = 7) KO female (n = 8) WT male (n = 13) KO male (n = 13)
Freezing 0.33 ± 0.33 6.33 ± 1.5 ** 2.14 ± 0.78 8.23 ± 1.96 **
Grooming 2 ± 0.62 2.67 ± 0.75 2.79 ± 0.56 3.69 ± 0.41
Rearing Wall 34.71 ± 2.6 29.78 ± 2.56 29 ± 2.72 24.92 ± 2.4
Rearing Open 5.86 ± 2.8 2.22 ± 0.7 4.71 ± 1.42 1.08 ± 0.49 *
Activity Wall 55.86 ± 4.08 47.22 ± 2.59 34.79 ± 6.05 32 ± 5.42
Activity Centre 13.86 ± 2.54 7.89 ± 0.82 * 24.23 ± 4.75 17.15 ± 4.65

In the open field test, GSK-3α KO (n = 7-13) and WT (n = 8-13) mice were subjected to the bright open field arena in a dark room for 5 minutes. 
The duration and number of different parameters were measured (as indicated in the table). Values are mean (± SEM). *p ≤ 0.05; **p ≤ 0.001.
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the cerebellum) found by MRI may correlate with
increased brain weight of KO animals.

The cerebellum is an important component of the brain
motor system, involved in the control and adaptability of
movement. To elucidate the involvement of the cerebel-
lum in morphological changes in GSK-3α null mice, we
performed a cerebellum-dependent behavior test (Figure

7B). Associative motor learning, coordination and bal-
ance were examined by a rotarod test in KO and WT ani-
mals. A significant coordination deficit was observed in
the KO group, as assessed by decreased latency to fall,
compare to WT littermates. During three day trials, rela-
tive improvements in rotarod performance were found to
be comparable between GSK-3α KO and WT mice (Figure
7B).

Altered responses of GSK-3α KO mice in forced swim and tail suspension testsFigure 2
Altered responses of GSK-3α KO mice in forced swim and tail suspension tests. A. Forced swim test. Mean dura-
tion of immobility (± SEM) of GSK-3α KO (n = 25) and WT (n = 18) mice (both genders). Immobility time was decreased in 
KO group ***p ≤ 0.0001 vs. WT. B. Tail suspension test. Mean duration of immobility (± SEM) of GSK-3α KO (n = 10) and 
WT (n = 6) mice (both genders). Immobility time was decreased in KO group *p ≤ 0.05 vs. WT. C-D. Novelty-induced loco-
motion and exploratory activity in the open field. Mean number of beam breaks (± SEM) in 5 min bins by GSK-3α KO (n = 24) 
and WT (n = 24) mice (both genders). C. Horizontal locomotion was decreased in GSK-3α KO at following time points: 0-5, 
5-10, 15-20, 20-25. D. Vertical (exploratory) activity was decreased in GSK-3α KO at following time points: 0-5, 15-20, 20-25. 
*p ≤ 0.05; **p ≤ 0.001. E. Basal and stress-induced corticosteroid levels. Basal morning (AM) and evening (PM) levels of corti-
costeroid (CORT) was measured at 9.00 am and 6.00 pm respectively in the naïve mice. Two weeks after, KO (n = 10-12) and 
WT (n = 19-20) animals were subjected to 30 minutes of restrain stress and blood samples were collected and analyzed for the 
level of CORT. Values are mean (± SEM). *p ≤ 0.05; **p ≤ 0.001
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The cerebellar cortex contains eight types of neurons:
Purkinje, granule, stellate, basket, Golgi, Lugaro, unipolar
brush cells and candelabrum cells [88-90]. Purkinje cells
provide the sole output of the cerebellar cortex and are the
pivotal element around which the cerebellar circuit is
organized [88]. Most Purkinje cells express calbindin,

which is expressed when neurons start to migrate and dif-
ferentiate [91]. By using anti-calbindin immunohisto-
chemistry, we examined the Purkinje cell composition of
the cerebellum in 9-10 week old KO and WT animals (Fig-
ure 7C). We quantified cell density and shape, analyzing
more than 1500 calbindin-positive cells per sample. Sig-

Decreased social interaction and aggression in GSK-3α KO miceFigure 3
Decreased social interaction and aggression in GSK-3α KO mice. A. Social affiliation and social novelty. Session I. 
Measurement of sociability. Mean length of time (± SEM) in the chamber with the stranger ("stranger side") than in the oppo-
site chamber ("empty side"). Unlike WT males (n = 19), KO (n = 14) animals failed to demonstrate a preference for social 
proximity by spending same time in both chambers. ***p ≤ 0.0001 in WT group. Session II. Measurement of social novelty. 
Mean duration of time (± SEM) in the chamber with the unfamiliar mouse from the sociability phase ("stranger 1") and in the 
opposite chamber with a new unfamiliar mouse ("stranger 2"). Unlike WT males (n = 19), KO (n = 14) animals failed to dem-
onstrate a preference for social novelty by spending same time in both chambers. ***p ≤ 0.0001 in WT group. B. Resident 
Intruder. GSK-3α KO mice (n = 7) and their littermate controls (n = 7) were individually isolated for four weeks and after 
were tested in the presence of the "intruder" in the home cage. GSK-3α KO males showed a significant decrease in the dura-
tion of fighting and aggressive grooming. The KO group showed decreased social interaction including the time spent sniffing 
the partner compared with WT males. The time spent by KO males in freezing behaviors and running away from the opponent 
was increased vs. WT. Values are mean (± SEM). **p ≤ 0.001. C. Olfactory bulb test. First, mice were habituated to a new 
chocolate food in the home cage overnight. The next day, rodent food pellets were removed from the cage, and the mice were 
food deprived for 24 hours. KO (n = 8) or WT (n = 7-9) mice were placed in the new cage, and the latency to find the hidden 
food was recorded. Values are mean (± SEM). p.value = n.s.
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nificant decreases in Purkinje cell density and size were
observed in GSK-3α KO mice (Figure 7D-E).

Discussion
We recently generated mice that lack GSK-3α. These ani-
mals are viable and show increased insulin sensitivity and
liver glycogen accumulation [57]. We have performed
comprehensive analyses of brain functions of these mice,
including extensive behavioral examination, evaluation
of neurotransmitter levels and neuroanatomical studies.
Similar to GSK-3β+/- mice [29,50,52], GSK-3α mutants
have decreased exploratory activity, decreased immobility
time and anti-aggression behavior. To our knowledge, this

is the first in vivo study showing several abnormal behav-
ioral features unique to mice lacking the GSK-3α genes,
such as decreased locomotion, increased sensitivity to
environmental cues, decreased social motivation and nov-
elty; impaired sensorimotor gating, associative memory
and coordination.

Several genetic approaches have been used to generate
mutant mice for GSK-3, including conventional GSK-3β+/

- [48,53] and GSK-3α-/- mice [57], conditional Nestin-spe-
cific GSK-3α, β knockout [55] and Nestin-GSK-3α, β
knockdown mice [92], GSK-α, β knock-in [56,93] as well
as mice overexpressing GSK-3β [94]. Studies in GSK-3β+/-

Impaired information processing in GSK-3α KO miceFigure 4
Impaired information processing in GSK-3α KO mice. A-B. Prepulse inhibition of acoustic startle response. A. PPI 
assay using a combination of startle (120 dB) and three prepulse levels (69 dB, 73 dB, and 81 dB) in GSK-3α KO (n = 11-13), 
WT (n = 9-10) (each gender). PPI is expressed as the mean percent reduction (± SEM) in startle amplitude at all three pre-
pulses. Higher y axis values represent greater percent PPI. *p ≤ 0.05; **p ≤ 0.001. B. The amplitude of the acoustic startle 
response was similar between WT and KO. p.value = n.s. C. Latent inhibition. Mean suppression ratios (± SEM) of GSK-3α 
KO (n = 11-12) and WT (n = 9-12) (both genders). LI deficit was observed in GSK-3α KO group. PE = pre-exposed mice; NPE 
= non-pre-exposed mice to the CS. ***p ≤ 0.0001 in WT PE vs. NPE.
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mice have shown increased anxiety-associated behavior
[51], which is similar to our findings in GSK-3α KO
females. However, GSK-3α KO males have normal per-
formance in EPM and light/dark transition test, indicating
comparable behavior to their WT littermates. In addition,
a significant increase in grooming activity was observed in
GSK-3α KO mice (both genders). A summary of the
behavioral responses of the GSK-3α KO animals com-
pared to wild type littermates is shown in Table 4.

GSK-3α KO mice exhibited decreased immobility times in
FST and TST. Increased floating or mobility in these ani-
mals was not due to hyperactivity. In contrast, GSK-3α
null animals demonstrated reduced locomotor activity in
the open field test, which was not accompanied by
changes in the level of dopamine in the striatum. A similar
behavior in the FST was observed in mice harboring a
deletion of one allele of GSK-3β [29,50], but it is interest-
ing to note that locomotion in these animals (GSK-3β+/-)

Long-term memory function in GSK-3α KO miceFigure 5
Long-term memory function in GSK-3α KO mice. A-B. Pavlovian fear conditioning (FC). Memory consolidation was 
assessed with a contextual and cued fear conditioning test. KO (n = 26) and WT (n = 18) mice were places in novel environ-
ment chamber for 3 min (conditioning stimulus, CS), where they received one electrical foot shock (unconditioning stimulus, 
US; shock intensity = 0.5 mV, duration = 2 sec). Twenty-four hours later mice were placed in the same (context) or modified 
(cue) chamber, and freezing time was measured as an indicator of memory consolidation. A. Contextual FC (baseline is a % of 
freezing before CS-US). B. Cued FC (baseline is a % of freezing before CS). KO mice (both genders) demonstrated less freez-
ing in A. and B., indicating impaired contextual and cued FC. *p ≤ 0.05 in KO vs WT. C. Tail flick test. The index of antinocic-
eption was detected by hot tail-flick method in WT (n = 12) and KO (n = 14) mice. Values represent the mean time for tail 
flicking response following direct heat stimulation. No significant differences (p.v. = n.s) were found between the groups. D. 
Passive avoidance. GSK-3α KO (n = 14) and WT (n = 24) mice were tested for learned fear response to the shocked chamber. 
Mean latency (± SEM) scores entering into the dark chamber before electric shock; and 1 and 35 days after the electric shock 
are shown. No significantly differences were found between KO and WT groups (p.value = n.s).
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was unchanged [29,50]. Reduced immobility time has
been also shown in mice overexpressing GSK-3β, but that
phenotype was related to hyperactivity of those animals,
as observed in an open field test [54]. The effect of the
GSK-3 inhibitor, lithium [39,40], to decrease immobility
time in FST, was first reported in rats [95] and was later
replicated in mice [96].

Increased mobility time during FST and TST, has been
interpreted as active, attempted avoidance of a stressful
situation. Examination of basal corticosteroids revealed
significantly decreased levels in KO mice, but stress-
induced levels were similar between the groups. On the
other hand, no changes in basal and stress-induced corti-
costeroid levels were detected in mice overexpressing
GSK-3β [54]. Corticosteroid receptors in the brain - gluco-
corticoid receptors (GR) and mineralocorticoid receptors
(MR) play an important role in modulating the HPA [97]
and their altered function has been implicated in the
pathogenesis of psychiatric disorders [97]. FbGRKO (fore-
brain-specific GR KO) mice have hyperactivation of the
HPA axis, impaired negative feedback regulation of the

HPA axis and, increased depression-like behavior [98].
On the other hand, increased GR and/or MR activity in the
hippocampus normalizes the hyperactivity of the HPA
axis, because the hippocampus plays a major role in medi-
ating negative feedback of glucocorticoids [97]. GSK-3 has
been shown to phosphorylate and inhibit GR [99]. More-
over, chronic treatment with a GSK-3 inhibitor, lithium,
increases the mRNA level of GR in the hippocampus and
hypothalamus [100]. It is possible that inactivation of
GSK-3α may affect the function of HPA axis and/or GR
and thus may contribute to the abnormal sensitivity to
stressful situations in the GSK-3α KO mice.

We observed changes associated with social interactions
in GSK-3α null males when compared to control animals.
We found robust decreased social interaction in the KO
animals in both sessions of this test. When assessed
within the resident-intruder paradigm to reveal aggressive
behavior, significantly fewer attacks were made towards
the intruder and GSK-3α KO males tended to move away
from the opponent. These observations indicate signifi-
cant disruption in territorial aggression in the GSK-3α

Table 3: HPLC analysis of catecholamine neurotransmitters

Dopaminergic Norepinergic Serotonergic

Monoamine neurotransmitters
(ng/mg of tissue)

DA HVA NE NM 5-HT 5-HIAA

Prefrontal Cortex

WT (n = 9) 0.041 ± 0.028 0.102 ± 0.006 0.48 ± 0.018 0.077 ± 0.003 0.426 ± 0.021 0.238 ± 0.01

KO (n = 9) 0.041 ± 0.018 0.086 ± 0.004* 0.47 ± 0.017 0.083 ± 0.006 0.394 ± 0.017 0.25 ± 0.007

Hippocampus

WT (n = 9) 0.018 ± 0.001 0.038 ± 0.003 0.651 ± 0.023 0.056 ± 0.003 0.669 ± 0.019 0.705 ± 0.042

KO (n = 9) 0.015 ± 0.002 0.041 ± 0.003 0.566 ± 0.016** 0.051 ± 0.004 0.625 ± 0.016 0.747 ± 0.029

Amygdala

WT (n = 9) 0.805 ± 0.041 0.303 ± 0.013 0.498 ± 0.018 0.055 ± 0.003 0.562 ± 0.021 0.466 ± 0.031

KO (n = 9) 0.835 ± 0.087 0.291 ± 0.012 0.506 ± 0.013 0.064 ± 0.003* 0.523 ± 0.021 0.492 ± 0.021

Striatum

WT (n = 9) 13.49 ± 0.42 1.486 ± 0.049 0.12 ± 0.009 0.029 ± 0.003 0.425 ± 0.023 0.407 ± 0.028

KO (n = 9) 13.486 ± 0.28 1.534 ± 0.036 0.117 ± 0.006 0.024 ± 0.002 0.42 ± 0.017 0.399 ± 0.01

Levels of monoamines and metabolites, including dopamine (DA), 4-hydroxy-3- methoxyphenylacetic acid (HVA), 3 norepinephrine (NE), 
normetanephrine (NM), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA), were quantified by HPLC with electrochemical detection in 
prefrontal cortex (PFC), hippocampus (HIP), amygdala (AM) and striatum (STR) of GSK-3α KO (n = 9) and WT (n = 9) mice. In bold type *p.value 
≤ 0.05; **p.value ≤ 0.01 KO vs. WT.
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knockout animals, an important component of social
behavior in adult males. Similar to GSK-3α KO mice, anti-
aggression behavior was observed in GSK-3β+/- mice [52];
however, parameters of sociability have yet to be assessed
in GSK-3β+/-mice.

The mechanism underlying decreased social behavior in
GSK-3α KO mice is still unknown. It is known that social
behavior is affected by an animals sentiment (e.g. famili-
arity and comfort within a given situation) [101], hence,
the increased sensitivity to stress observed in GSK-3α KO
mice might explain their decreased social affiliation/nov-
elty and defensive behavior during the direct social con-
tacts with intruder. Moreover, of the distinct behaviors
results may be explained in terms of stress responsiveness

of the GSK-3α KO mice. Each test is associated with a level
of aversive conditions and, hence, exposure of animals to
a new situation in the behavioral test will naturally trigger
stress. Importantly, the GSK-3α KO mice expressed very
mild changes in the EPM test which is relatively non-
stressful experience. However, the bright, inescapable
open field test, as well as the unfamiliar partner in the res-
ident-intruder task, stimulated passive avoidance in KO
animals. Finally, the highly aversive situations in the FST
or TST provoked greater active avoidance behavior in
GSK-3α KO mice.

Norepinephrine (NE) is a stress hormone, and we note
that small but significant reductions in NE levels were
observed in the hippocampus of GSKα KO animals.

MRI of the brainFigure 6
MRI of the brain. The per-voxel results of the statistical map of the Jacobian determinant (tissue compression/expansion) are 
shown as composite images of two coronal sections of the GSK-3α KO brain compared to WT control brain. All colored vox-
els are significant with a false discovery rate of 10% (n = 9 for knock outs, n = 8 for wild types). The coronal level of each sec-
tion is pictorially illustrated in the bottom right corner. Abv, arbor vita of the cerebellum, CbCx, cellebellar cortex, CrAq, 
cerebral aqueduct.
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Mouse models engineered to lack NE [102,103] display
anxiety, impaired social memory and low levels of aggres-
sion [104], as well as reduced exploratory activity and
decreased locomotion in novel environment, open field
situations [105], phenotypes similar to those we observe
in GSKα KO animals. Thus, the decreased level of NE in
the hippocampus of GSKα-/- KO mice may contribute to
reduced sociability and aggressive behavior in these ani-
mals. Further studies will elucidate this question.

Previous studies have reported that GSK-3β protein levels
in the cortex of different inbred mouse strains are

inversely correlated with strength of prepulse inhibition
(PPI) [106]. The prepulse inhibition enhancement
observed in the GSK-3α KO mice suggests that GSK-3α
may contribute to normal sensorimotor gating. The lim-
bic and cortico-pallido-striato-thalamic circuitry is
thought to be responsible for modulation of PPI in the
rodents. Thus, these results may reflect dysfunction within
the auditory-startle response pathways, which consists of
an essential central relay in the cochlear nuclear complex,
an intermediate brain stem relay in the reticular forma-
tion, a long reticulospinal pathway via the medial longi-
tudinal fasciculus and outputs via spinal cord and brain

Neuroanatomical and histological examination of the brainFigure 7
Neuroanatomical and histological examination of the brain. A. Brain weight. Brain weight analysis was perform in 24 
weeks GSK-3α KO (n = 19-10) and WT (n = 14-10) animals. Values are mean (± SEM). *p ≤ 0.05; **p ≤ 0.001. B. Rotarod. 
GSK-3α KO (n = 13) and WT (n = 11) mice were tested on an accelerating rotarod in 3-day trials. Significant differences 
between the groups (p.value = 0.013) were found on day1 in the balance and coordination; however no changes were found in 
motor learning. C-D. Decrease in Purkinje cell density and size in GSK-3α KO mice. C. Purkinje cells image. Immunohisto-
chemistry against Calbindin antibody of WT and GSK-3α KO cerebellum (shown original magnification, ×4 (upper panel) and 
×10 (lower panel)). D. Statistical analysis of Purkinje cell density. Average cell density was determined by taking the ratio of the 
number of Purkinje cells to the length of cerebellar cortex segments. Cell density is significantly decreased in the GSK-3α KO 
(p < 0.05; Kolmogorov-Smirnov Z Test). E. Significant decrease of cell size in the GSK-3α KO (p < 0.01; Kolmogorov-Smirnov 
Z Test). Cell size was determined by measuring the longest axis of Purkinje cell bodies [N = 2345 WT, N = 1588 GSK-3α KO 
(number of cells)].
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stem motoneurons [107]. Slightly increased volumes of
the medulla oblongata and pons in GSK-3α KO mice were
identified by MRI, indicating that anatomical changes in
brain stem structure may contribute to alterations in sen-
sory-motor-gating in the mutant animals. It is unlikely
that the observed difference in PPI between the GSK-3α
KO and WT groups was the result of poor hearing in the
mutants. The magnitude of ASR (acoustic startle
response) was similar between KO and WT groups of both
genders. Results from pharmacological analysis [108-110]
and mouse inbred strains [111] have clearly dissociated
the startle and prepulse inhibition responses. In contrast,
GSK-3β heterozygous mice and wild type mice treated
with lithium show no changes in PPI and ASR [50,51].
Changes in psychomotor function and an increased

acoustic startle response have been found in mice overex-
pressing GSK-3β [54,94].

Long-term potentiation (LTP) and long-term depression
(LTD) are two forms of synaptic plasticity and have been
implicated in the molecular and cellular basis of learning
and memory [112,113]. Several recent studies report the
importance of GSK-3 activity during synaptic plasticity
and memory function. Activation of GSK-3 inhibits the
development of long-term potentiation (LTP) [27],
whereas its inhibition prevents the development of long-
term depression (LTD), as shown in brain slice studies
[24-26]. Transgenic mice overexpressing GSK-3β have
reduced LTP induction [28] and impaired acquisition of
reference memory in a novel object recognition task

Table 4: Summary table of behavioral phenotypes of GSK-3α KO mice vs. WT littermate controls

Type of behavior Changes Type of the test Figure #

Anxiety ▲ in females only EPM Table 1

≠ in males Light-dark box Figure 1A-D

Emotionality ▲ (both genders) Open field 5 min Table 2

Locomotor activity ▼ Open field 30 min Figure 2C

Exploratory activity ▼ Open field 30 min Figure 2D

Depression-like behavior ▼ FST Figure 2A

▼ TST Figure 2B

Sociability and social novelty ▼ Social interaction test Figure 3A

Aggression ▼ Resident Intruder Figure 3B

Information processing ▲ PPI PPI/ASR Figure 4A-B

▲ NPE in KO LI Figure 4C

Long term memory ▼ FC Figure 5A-B

≠ Passive avoidance Figure 5D

Coordination, balance ▼ Rotarod Figure 7B

Motor learning ≠ Rotarod Figure 7B

Neuroanatomical changes ▲ cerebellum MRI Figure 6

▲ brain Brain weight Figure 7A

▼ Purkinje cells IHC Figure 7C-E

▲ (black block upward-facing arrow) - increased; ▼ (black block downward-facing arrow) - decreased; ≠ (crossed out equal sign) - same/no 
changes
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[114]. In addition, it has been shown that overexpression
of GSK-3β impairs spatial learning [115], though the
mechanism underlying this effect in unknown. Recent
studies by Kimura et al. [53] have shown the importance
of GSK-3β in memory reconsolidation in adult brain.
Mice heterozygous for GSK-3β exhibit retrograde amnesia
[53]. These animals have reduced memory reconsolida-
tion but normal memory acquisition, suggesting that they
might be impaired in their ability to form long-term
memories.

A potential role for GSK-3α in cognitive function was eval-
uated by classical contextual and cued fear conditioning
as well as by a passive avoidance test. The fear condition-
ing test can be used to examine both hippocampus-
dependent memory and amygdala-dependent emotional
memory [116-118]. GSK-3α KO mice exhibited impaired
contextual and cued memory in the fear conditioning par-
adigm; however memory performance was comparable to
WT in the passive avoidance test. Thus, it is possible that
GSK-3α KO mice have relatively normal memory forma-
tion, but show active avoidance from stressful situations
(in FC, FST, TST). Notably, the formation of associated
memory was impaired in GSK-3α KO compared to WT
mice as was observed in the latent inhibition test. This
type of memory formation (LI) has not been tested in
GSK-3β heterozygotes. Long-term treatment with a GSK-3
inhibitor, lithium, has been shown to impair latent inhi-
bition and acquisition of conditioned response in rats
which had not been pre-exposed to the stimulus [119]. It
has also been reported that while lithium appeared to
decrease the passive avoidance response to shock, its effect
in an active avoidance paradigm was unchanged, leading
to the suggestion that lithium decreases not cognition, but
sensitivity to low-intensity stimuli [120,121]. It is possible
that different neuronal circuits are affected by inactivation
of GSK-3α which are differently involved in fear condi-
tioning, passive avoidance and/or latent inhibition and
memory formation. However, molecular and electrophys-
iological mechanisms underlying the effects of GSK-3α on
learning/memory have yet to be elucidated.

Our studies revealed an increase in cerebellar volume, but
normal brain volume in GSK-3α KO mice. In contrast,
mice overexpressing GSK-3β have been reported to exhibit
reduced brain volume, as determined by MRI, findings
that have been ascribed to a reduced size in the soma-
todendritic compartments [94]. The cerebellum is an
important brain region responsible for motor coordina-
tion [122,123], sensory [124] and cognitive function
[125-128] and has also been implicated in emotional
processing [129-131]. We examined cerebellum-depend-
ent coordination and memory using a rotarod test. In con-
trast to GSK-3β heterozygote mice [50,51], GSK-3α KO
mice showed impaired coordination in the rotarod test;
however, motor learning in this test was unaffected.

Purkinje cells are considered to be the primary site of
informational processing in the cerebellum and they
channel output to the deep cerebellar and brainstem
nuclei [132]. Immunohistological examination of the cer-
ebellum of GSK-3α KO and WT animals revealed a signif-
icantly reduced number and size of Purkinje cells in the
KO animal group. Considering these data together with
neuroanatomical changes of cerebellum, we hypothesize
that the expenditure of the region, observed by MRI, may
correlate with morphological changes in deep cerebellar
nuclei (DCN). Axons of PC are terminated in DCN [132].
A decreased number and size of PC, and possiblly their
axons, may trigger compensatory changes in the density of
DCN's dendrites and therefore may explain the increased
volume in this region. Further experiments will elucidate
the role of GSK-3α in cerebellar development and forma-
tion of cerebellar circuits.

Our findings raise the question of how loss of GSK-3α
function may lead to the observed cerebellar phenotype?
GSK-3 is involved in Reelin, Wnt, Notch and Hedgehog
signaling pathways [5,7,8,133], which have been shown
to be critical for cerebellar development. Early patterning
of the cerebellum is mostly regulated by Wnt 1 [134,135]
and the transcriptional factor Engrailed (En 2) [136-138].
These gene products are essential for cerebellar develop-
ment and foliation. En2 has been shown to regulate genes
related to vesicle formation and transport in Purkinje cells
[139]. Notch signaling has been shown to regulate the dif-
ferentiation of cerebellar progenitors through the period
of cerebellar neurogenesis [140]. Shh (Hedgehog) signal-
ing is critical for granule cell proliferation [141] and for
the cerebellar foliation process [142-144]. The Reelin-to-
Dab1 pathway [145-147], mediated by cadrerins [148-
150] and integrins [151] has been implicated in the devel-
opment of Purkinje cell-cell adhesion properties [152].
Decreased levels of Reelin [145,153] and the pro-survival
molecule Bcl-2 have been suggested to play a role in the
cerebellar pathology [153,154]. Lastly, lithium has been
speculated to synergize with cytokines and neuroleptics
and thereby disrupt calcium homeostasis within Purkinje
cells [155]. Lithium toxicity is most prominent in the cer-
ebellar cortex [156]. In humans, lithium toxicity is associ-
ated with severe loss of Purkinje cells [157-160]. Thus,
GSK-3α may be required for normal Purkinje cell devel-
opment and maintenance.

Conclusion
We have identified GSK-3α as a factor influencing specific
stress-response and social behaviors, as well as cerebellar
physiology. The GSK-3α mutant mice provide a new
genetic model to study factors that may influence abnor-
malities in these processes.
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