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Abstract

Studies into the mechanisms of corticosteroid action continue to be a rich bed of research, spanning the fields of
neuroscience and endocrinology through to immunology and metabolism. However, the vast literature generated,
in particular with respect to corticosteroid actions in the brain, tends to be contentious, with some aspects suffer-
ing from loose definitions, poorly-defined models, and appropriate dissection kits. Here, rather than presenting a
comprehensive review of the subject, we aim to present a critique of key concepts that have emerged over the
years so as to stimulate new thoughts in the field by identifying apparent shortcomings. This article will draw on
experience and knowledge derived from studies of the neural actions of other steroid hormones, in particular
estrogens, not only because there are many parallels but also because ‘learning from differences’ can be a fruitful
approach. The core purpose of this review is to consider the mechanisms through which corticosteroids might act
rapidly to alter neural signaling.

The protagonists and their roles
Corticosteroids are the main humoral mediators of
stress and their increased secretion in response to
adverse stimuli normally results in a cascade of physio-
logical and behavioral homeostatic mechanisms that
allow survival and the activation of defense mechanisms
against future insults. They facilitate arousal and the
appropriate channeling of physiological resources; pri-
marily, corticosteroids act to conserve essential salts, sti-
mulate gluconeogenesis and lipid metabolism,
cardiovascular and pulmonary function and erythropoei-
sis and bone turnover, while inhibiting, among others,
reproductive and ingestive behaviors as well as immune
responses [1]. Thus, corticosteroids are well suited to
serve the fight-or-flight response (first described by
Walter B. Cannon in 1915).
Corticosteroids (CS) are primarily produced by the

adrenal glands although recent studies suggest that they
may also be synthesized in the brain [2,3]. The term
‘corticosteroids’ embraces two prototypic steroids with
distinct biological functions: glucocorticoids (cortisol in
most large mammals, corticosterone in rodents and
other taxa), named because of their gluconeogenic prop-
erties, and mineralocorticoids (primarily aldosterone),
named for their role in the regulation of the salt-water
balance. Like other steroid hormones, corticosteroids

are small, lipophilic molecules (ca. 300 Da) that are
derived from cholesterol. Their physical properties facili-
tate their passage across the blood brain barrier where
they act to maintain brain structure (they are implicated
in the regulation of neuronal cell birth, differentiation
and apoptosis, as well as dendritic arborization and
synaptic function), and integrate a variety of behavioral
and physiological processes, including their own secre-
tion. In this respect, they serve as messengers between
the periphery and brain, but also between the external
and internal environments and the brain.
The hypothalamo-pituitary-adrenal axis embraces the

feedforward and feedback neuroendocrine mechanisms
that regulate CS production and synthesis (Figure 1).
Neural inputs trigger the release of adrenocorticotrophic
hormone (ACTH) from the pituitary which, in turn, sti-
mulates adrenocortical synthesis and secretion of CS.
Although CS are not stored in a readily-releasable pool,
it is estimated that adequate amounts of CS can be
released into the bloodstream within minutes of appro-
priate neural stimuli. Noxious (stressful) stimuli are the
primary triggers of neural firing that result in increased
CS release. On the other hand, CS are secreted accord-
ing to strictly-regulated circadian rhythms that are dic-
tated by the central nervous system. More recently, CS
have been found to have ultradian rhythmic patterns of
release. Such patterns are most likely maintained
through dynamic cross-talk between the peripherally-
produced CS and centrally-driven regulatory
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mechanisms; they are also likely important integrators of
normo-physiological functions [4].
Since corticosteroids come on stage within 3-7 min-

utes of first perception of a stressor [5], they may be
considered to be secondary or auxiliary players in com-
parison to monoamines (in particular, epinephrine and
norepinephrine) whose actions are initiated within milli-
seconds to seconds [6] i.e. corticosteroids are secreted
during the first stage of the ‘general adaptation syn-
drome’, a concept introduced by Hans Selye in 1946.
However, since corticosteroids act against the back-
ground of increased monoamine secretion, it is thought
that they act to fine-tune the organism’s response to
stress [7] and to facilitate signal-to-noise discrimination.
Moreover, unlike the transient monoamine response,
corticosteroids exert sustained actions on cellular activ-
ity and behavior, and therefore are essential for ensuring
the orchestration of a coordinated adaptive response as

well as ‘preparedness’ of the organism to cope with
future challenges.
Although corticosteroids are often thought of in nega-

tive terms because of their causative role in diseases
such as diabetes, hypertension, osteoporosis and
immune suppression, they are essential for adaptation to
stress and for maintaining physiological processes. With
respect to brain structure and function, corticosteroids
play an important role in maintaining hippocampal cell
numbers under basal conditions; this is illustrated by
robust observations that removal of corticosteroids by
extirpation of the adrenal glands results in massive
apoptosis, with parallel increases in neurogenesis, within
the granule cell population of the hippocampus [8]. On
the other hand, stress and elevated levels of glucocorti-
coids inhibit the generation of new granule neurons [9].
Another aspect that suggests an important role of corti-
costeroids in normo-physiology is the well-pronounced

Figure 1 Schematic representation of the hypothalamo-pituitary-adrenal (HPA) axis and its neuronal inputs. Corticotropin-releasing
hormone (CRH)- and arginine vasopressin (AVP)-expressing parvocellular neurons in the paraventricular nucleus (PVN) project to pituitary (via the
median eminence) where they stimulate adrenocorticotrophic hormone (ACTH) synthesis and secretion, subsequently triggering corticosteroid
synthesis and release from the adrenal cortex. Besides acting in the brain to regulate various behaviours, corticosteroids fine-tune the
subsequent pattern (amplitude and duration) of corticosteroid secretion; they activate their cognate receptors in the pituitary, hypothalamus and
hippocampus and bed nucleus of the stria terminalis (BNST, a relay between the hippocampus/amygdala and the PVN) to restrain, and in the
amygdala to enhance, adrenocortical secretion. Monoaminergic transmitters, namely, norepinephrine, serotonin and dopamine released from
midbrain nuclei (the locus coeruleus [LC], raphé and ventral tegmental area [VTA] and substantia nigra [SN], respectively) exert modulatory
effects on all brain regions involved in the control of the HPA axis. ‘Plus’ signs (green) indicate positive drive on the HPA axis; ‘minus’ signs (red)
represent sites of corticosteroid negative feedback; ‘clock’ signs denote neuronal populations known to respond rapidly to corticosteroids.
Corticosteroids are secreted rhythmically, displaying ultradian and circadian patterns. The circadian peak coincides with the onset of the daily
activity cycle (dark phase in rodents, light phase in humans). While the physiological and behavioural significance of the ultradian rhythms of
corticosteroid secretion is still unclear, it is plausible that they serve to dynamically fine-tune the regulation of the HPA axis and thus, to facilitate
adaptive processes. LD, light-dark cycle.
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circadian pattern of corticosteroid secretion. These
rhythms are robust and bi-directionally tightly coupled
to the individual’s sleep-activity and feeding cycles,
while being entrained and maintained by the daily light-
dark cycle.
The magnitude and duration of the humoral response

to stress is tightly coupled to the nature (quality, inten-
sity and duration) of the stressor, as well as the context
in which it occurs. Depending on context (e.g. the pre-
vailing physiological or psychological state, as well as
history of the individual), stressors may trigger excessive
corticosteroid secretion over an extended duration; in
such cases, the response switches from being an adap-
tive one into a maladaptive one, marked by transient or
chronic pathology. Major depression and cognitive
impairment are two conditions that represent the so-
called stress-induced disorders of the brain. The first of
these seems to reflect a sub-optimal stress-coping strat-
egy and may largely originate from impairments of the
mechanisms contributing to the homeostatic negative
feedback processes that act to protect the organism
against excessive exposure to corticosteroids; frequently,
depressed mood is accompanied by impaired cognition
and hyperemotionality, indicating that stress impacts on
multiple, inter-related neural circuits. A number of
human and animal studies have demonstrated the dis-
ruptive effects of excessive corticosteroid secretion on
cognition [10-12]. There is now strong evidence that the
latter involve structural changes, including severe reduc-
tions in the dendritic arborization of hippocampal and
prefronto-cortical neurons [13-15]. and synaptic loss
[16-18]. In addition, recent studies indicate that stress
may initiate neurodegenerative processes that increase
the risk for severe cognitive deficits such as those seen
in dementia of the Alzheimer type [19]. Lastly, chroni-
cally elevated levels of corticosteroids interfere with cen-
tral and pituitary integrators and regulators of the
hypothalamo-pituitary-adrenal (HPA) axis, resulting in
impaired corticosteroid negative feedback and sustained
corticosteroid secretion [20].

The soliloquy we’ve come to know and love
Glucocorticoids and mineralocorticoids fulfill their char-
acteristic biological functions through the mediation of
glucocorticoid receptors (GR) and mineralocorticoid
receptors (MR), respectively. Both of these receptors are
present in the brain; while GR are expressed ubiqui-
tously (most strongly in the hippocampus), MR are
more discretely distributed (strongly expressed in certain
hippocampal subfields and the septum, and moderately
expressed in the amygdala and hypothalamic paraventri-
cular nucleus) [21]. The MR has a 7-10-fold greater affi-
nity for corticosterone as compared to the GR [22]. It is
thus estimated that the MR is some 80% occupied

under basal conditions, and that the GR only becomes
activated when corticosterone levels rise during the daily
circadian peak of corticosterone secretion or after stress.
Although aldosterone may be synthesized in the brain
[2,3], it should be noted that brain MR do not normally
‘see’ their prototypic endogenous ligand; aldosterone is
produced in the periphery at concentrations that are too
low to have a direct impact on the brain and in any
case, the hormone does not easily cross the blood-brain
barrier. On the other hand, it should be mentioned that
ligand availability is subject to local regulation through
activation/deactivation of cortisol/corticosterone through
the actions of 11b-hydroxysteroid dehydrogenase [23].
The MR and GR belong to the phylogenetically

ancient superfamily of nuclear receptors, all of which
are transcriptional factors. For the sake of clarity, we
will herein refer to nuclear MR and GR as nMR and
nGR, respectively. Whereas the unliganded nMR is pri-
marily localized in the nucleus, the unoccupied nGR
resides in the cytoplasm and only translocates to the
nucleus upon ligand activation. This process depends on
the dissociation of a host of chaperone and co-chaper-
one molecules, including heat shock protein 90 (hsp90)
as well as on the inclusion of a nuclear translocation
signal in the receptor protein [24]. Like other nuclear
receptors, nMR and nGR are organized according to
canonical modules, including a ligand binding domain
(LBD), a DNA binding domain (DBD), and two activa-
tion functions (AF-1 and AF-2) at their N- and C-term-
inals, respectively. The various domains share
considerable homologies (homology between nMR and
nGR: ~57% in LBD; ~94% in DBD). Interactions of the
DBD with hormone response elements (HRE) in the
promoters of specific genes result in the induction or
repression of gene transcription and subsequently,
changes in the expression of proteins that influence cel-
lular functions. Homologies also exist within the HRE
sequence of various nuclear receptors, and receptor
recruitment and interactions with specific co-regulator
proteins (co-activators/-repressors) may endow these
structurally similar receptors with differing specificities
and potencies.

Stage props
Transcriptional and translational effects of corticosteroid
receptor activation have been demonstrated using drugs
such as actinomycin D and cycloheximide, respectively.
On the other hand, demonstration that nGR mediate
corticosteroid effects have relied on the use of the
antagonist mifepristone (RU 38486, also a potent
antagonist of progesterone receptors), while spironolac-
tone or oxoprenoate (RU28318) have been used to
demonstrate mediation through nMR. Other potentially
useful additions to the pharmacological toolbox for
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studying events mediated by nGR and nMR include
established chaperone inhibitors of hsp90 (e.g. cisplatin
and geldanamycin; [25]) and of the FK506-binding pro-
teins (e.g. GPI1046; [26]).

Drop sceneb

The mode of action of corticosteroids summarized
above, i.e. involving gene transcription and translation,
may be generalized to all steroid hormone receptors,
including those for estrogens. Since nuclear receptors
become transcriptionally active upon ligand activation,
their actions are, by definition, slow in onset and poten-
tially long-lasting (hours to days, or even months); at
best, gene transcription and translation require a mini-
mum of 20-30 minutes (translation takes longer than
transcription) [27]. However, steroids have been impli-
cated in the elicitation of a number of ‘rapid’ or ‘fast’
physiological and behavioral responses to external sti-
muli; some examples of fast steroid-mediated responses
and the mechanisms thought to underlie their actions
are presented in Additional File 1. Historically, the idea
that steroids can rapidly alter neuronal excitability and
conduction stemmed from work on the actions of sex
steroids by Kawakami and Sawyer in 1959 [28] and
Woolley and Timiras in 1962 [29].
As a rule, fast responses are considered to be those

that occur within the first 20 minutes of increased ster-
oid secretion, i.e. in a much shorter timeframe than that
required for effects on gene transcription and protein
synthesis. Somewhat erroneously, these fast actions are
referred to as ‘non-genomic’; in fact, rapidly triggered
signaling cascades may ultimately converge in the
nucleus to regulate gene transcription and protein
synthesis. Distinction between the ‘fast’ and ‘slow’
actions of steroid hormones is more of mechanistic than
of behavioral or physiological importance, since the lat-
ter are the integrated manifestations of sequential
events. Viewed from this perspective, the rapid actions
of steroids may be considered as ‘primers’ of the sub-
strates responsible for the manifestation of transcrip-
tional events triggered by nuclear receptors; kinase
cascades activated during early phases of steroid action
and which lead to the phosphorylation of regulatory
sites of nuclear receptors [30-32] are a good example of
such priming functions.
Many of the changes in behavior and brain physiology

that are listed in Additional File 1 reflect rapid
responses of the hippocampus to steroid hormones. For
example, corticosteroids have been consistently shown
to influence cognition and their effects are thought to
result from their ability to directly or indirectly alter the
excitability of hippocampal neurons. The hippocampus
has been extensively studied for a number of pragmatic
reasons. The input-output connections of the different

hippocampal subfields are well defined, making their
electrophysiological study convenient. Of all brain areas,
the hippocampus has been best studied in the context
of long-term potentiation (LTP) and long-term depres-
sion (LTD), the electrophysiological correlates of learn-
ing and memory, functions in which the hippocampus is
strongly implicated [[33-35]; see Figure 2 and Additional
File 2]. The hippocampus also serves as an important
homeostatic regulator of the HPA axis upon which it
exerts a strong negative drive [36,37] through the med-
iation of nMR and nGR [38].
Although the attention paid to the hippocampus is justi-
fiable because of its role in the regulation of many beha-
vioral and physiological processes, it should be
remembered that it constitutes only part of a complex
neuronal network that underpins physiology and beha-
vior in normal and pathological states. For example,
although the hippocampus plays an important role in
the regulation of the HPA axis, it should be noted that
other brain areas such as the prefrontal cortex [39],
amygdala and bed nucleus of the stria terminalis, under
the modulatory influence of monoamines from the hind-
brain [40], contribute to the control of corticosteroid
secretion; all these areas have reciprocal connections
with the hippocampus and express nGR.
Several studies have begun to define how corticoster-

oids and other steroids act on different brain structures
to produce integrated and adaptive behavioral and phy-
siological responses, e.g. the prefrontal and orbito-fron-
tal cortices (executive functions, including attention,
behavioral flexibility, declarative memory, decision mak-
ing [41,13,14,42]), thalamus (processing and gating of
sensory input [43], amygdala (evaluation of emotional
load of sensory input and regulation of fear [44], ventral
striatum (motivation and reward [45] and decision-mak-
ing [42]), and the cerebellum (learning of motor tasks
[46]. Of these, the amygdala, involved in the control of
fear, aggression and cognition (see Additional File 1),
has been the most intensively studied. Interesting work
by Roozendaal and colleagues has demonstrated a cross-
talk between rapid GC and noradrenergic signaling in
contextual memory consolidation [44,47] and suggests
that endocannabinoids are key mediators of this cross-
talk [48].

Putative membrane receptors - pirates with legs
to stand on?
The message that emerges from the previous section is
that nuclear receptors, acting as transcriptional factors,
are unlikely to mediate rapid actions of the sort listed in
Additional File 1. Nevertheless, the identity of the mole-
cular entity that allows rapid transduction of steroid sig-
nals remains elusive. Interestingly, some of the fast
responses to corticosteroids are reportedly attenuated in
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the presence of pharmacological antagonists of nGR (RU
38486 [49] or nMR (spironolactone [50,51]). These find-
ings suggest certain homologies between the classical
nuclear receptors and the putative receptors mediating
the rapid actions of these steroids. Nevertheless, the
existence of another class of receptors, with distinct che-
mistries and cellular localizations, and that are not sen-
sitive to the above-named antagonists, cannot be
dismissed.
Several mechanisms that may account for membrane-

mediated transduction of the rapid actions of estradiol
have been proposed (see Figure 3). Substantial evidence

supports the view that classical nuclear estrogen recep-
tors (nER of which there are two isoforms, ERa and ERb)
are integrated into, or in close proximity of, the cell
membrane. One hypothesis is that palmitoylation facili-
tates the interaction of these receptors with caveolins, a
family of proteins that associate with cholesterol and
sphingolipids to form caveolae within the plasma mem-
brane and which are implicated in signal transduction.
While some authors describe protein-protein interactions
of such membrane-associated nER with other membrane
proteins as a mechanism to explain rapid estrogen signal-
ing [52-54], others propose mediation by a membrane-

Figure 2 Schematic representation of induction and recording of long-term potentation and long term depression in the
hippocampus. Long-term potentiation (LTP) and long-term depression (LTD) can be induced by applying an electrical stimulus by placing an
electrode placed in the Schaffer collateral-commissural (SCC) pathway and recording from the CA1 subfield. Upper panel shows a coronal section
through the dorsal hippocampus, with schematic representation of intra-hippocampal connectivity. The CA1 pyramidal cell layer receives input
from the entorhinal cortex through the dentate gyrus [DG] and the CA3 pyramidal layers and the SCC; the subiculum carries hippocampal
efferents. Lower left-hand panel illustrates measurements of LTP as excitatory postsynaptic potentials (EPSP, peak amplitude or slope of the latter).
Initially, low-frequency stimulation (LFS, usually less than 0.1 Hz) is applied to the Schaffer collaterals to establish a stable baseline (usually for 20-
30 min), after which LTP is induced by high-frequency stimulation (HFS; usually 100 Hz), followed by LFS. Successful induction of LTP can be
assumed when the post-HFS EPSP peak amplitude (or slope) exceeds that seen before HFS and is maintained for at least 60 min. ① depicts a
single evoked EPSP; ② represents a potentiated EPSP after HFS. Lower right-hand panel shows that EPSP recordings also serve to detect LTD.
After initial baseline recording, low-frequency stimulation (LFS, usually 1 or 5 Hz) is applied to the SCC; successfully induced LTD can be assumed
when the post-LFS EPSP peak amplitude (or slope) is smaller than that observed before LFS. ① shows a single baseline EPSP; ② depicts a
example of a depressed EPSP after LFS.
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bound ER (mER) that is coupled to a Gaq protein. Evi-
dence for the latter includes the observation that estra-
diol induces activation of the phospholipase C- protein
kinase A (PLC-PKC-PKA) pathway in nER knockdown
mice [55]. The same investigators demonstrated rapid
electrophysiological effects of STX, a diphenylacryla-
mide-based selective estrogen receptor modulator, in
nER knockout animals; STX, which does not bind to
either isoform of the nER, proved to be more potent than
estradiol in their in vitro and in vivo test systems [55,56].

While no mER has been cloned and characterized to
date, GPR 30, an orphan G protein-coupled receptor
(GPCR), has been identified as a potential transducer of
estrogen signals that originate at the cell membrane
[57,58]. GPR 30 was shown to display similar structural
characteristics to other membrane receptors [57], but
was nevertheless viewed with a certain amount of skepti-
cism. For example, the nER antagonist ICI 182,780 exerts
agonistic effects on this receptor [59] and neurons from
GPR 30 knockout mice still display rapid responses to

Figure 3 Schematic representation of corticosteroid-triggered multiple tentative rapidly influencing neuronal function. Corticosteroids
are represented by red triangles. Nuclear GR (nGR) interact with caveolins [cf. [81]]; the interaction probably depends on posttranslational
modifications of nGR to yield so-called membrane corticosteroid receptors (mCR). Alternatively, CS-initiated intracellular signaling cascades may
result from corticosteroid binding to proteins embedded in the plasma membrane, e.g. G-protein-coupled receptors (GPCR) [75] which, upon
activation, activate protein kinase A (PKA) and protein kinase C (PKC) in turn. Other evidence points to membrane-bound corticosteroid binding
proteins that interact with members of the src family of kinases (SFK) to activate the mitogen-activated protein kinase (MAPK) pathway and/or
modulate the activity of other membrane-associated proteins, e.g. NMDA receptors and other ion channels with potential steroid binding sites
[76,85,86,222]. Under basal conditions, nGR are tethered in the cytoplasm in the form of a protein complex that includes the chaperone heat
shock protein 90 (hsp90) which itself may directly interact with Src kinases and the MAPK kinase, MEK [cf. [83]]. Additionally, direct interactions
between the nGR and Ras which may be functionally relevant have been described [84]. Finally, MAPK-mediated phsophorylation of nGR may
influence the transcriptional activity of nGR [32]. Thus, corticosteroid actions at the plasma membrane can converge and prime or potentiate
hormonal actions on gene transcription.
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estradiol [60], the latter finding suggesting that GPR 30
may co-exist alongside (an)other mER with unique phar-
macological properties. Notably, in an extension of their
earlier work, Revankar et al. [61] exploited chemical biol-
ogy to explore the subcellular localization of GPR 30 and
its signaling potential; on the basis of observations in 4
cancer cell lines, they discarded the notion that sufficient
GPR 30 is localized at the plasma membrane and rather
suggested that GPR 30 localized in the endoplasmic reti-
culum serves as an intracellular transmembrane receptor
for estrogen.
Interestingly, Toran-Allerand and colleagues [62,63]

described a high affinity (KD for estradiol: 1.6 nM)
caveolin-associated protein in the plasma membranes of
neonatal (but not adult) neocortical and uterine tissues.
This so-called ER-X seems to come closer to meeting
the expectations of a distinct mER insofar that it cannot
be blocked by ICI 182,780 [62]; moreover, these authors
found that experimentally-induced ischemic stroke in
adult animals is accompanied by an upregulation of ER-
X in the brain, suggesting that the ER-X mediates the
neuroprotective actions ascribed to estrogens.
It is tempting to hypothesize, that the mediators of

rapid corticosteroid effects may share similar basic prop-
erties and mechanisms with the proposed membrane-
associated estrogen receptors. The existence of a mem-
brane-bound receptor for corticosteroids (herein
referred to as mCR) was postulated by Willmer in 1961
[64]. Willmer’s suggestion that steroid hormones inter-
digitate with, and alter the permeability of, lipids in the
plasma membrane, lost currency as evidence that ster-
oids bind to intracellular proteins (nuclear receptors)
and stimulate protein synthesis began to accumulate
from 1961 onwards [65,66]. However, in 1974 Satre and
Vignais described corticosterone binding to mitochon-
drial preparations from the adrenal and kidney [67], a
finding that eventually extended to other cell types [68].
A series of authors provided evidence for membrane-
bound steroid recognition sites in the brain [69-71];
among these, Towle and Sze demonstrated specific cor-
ticosterone binding to plasma membrane preparations
from rat brain synapses [72]. These membrane binding
sites had a relatively high affinity for corticosterone (KD

10-7 M vs. 10-9 M in the case of cytosolic binding sites)
and treatment with phospholipase A2 or phospholipase
C led to complete dissociation of membrane-bound cor-
ticosterone. Similarly, Orchinik et al. described the pre-
sence of mCR in brain synaptosomal fractions obtained
from the amphibian Taricha granulosa (rough-skinned
newt) [69]. These receptors showed pharmacological
specificity for corticosterone and cortisol (KD 10-9 M),
and lesser affinities for aldosterone and other natural
and synthetic steroids (such as dexamethasone and RU
38486). Importantly, Orchinik et al. reported a linear

relationship between the potencies of various com-
pounds (corticosterone being the most potent) in inhi-
biting male reproductive behavior (inhibition by
corticosterone within 8 minutes of application) and
their ability to bind the putative mCR [69]. In subse-
quent studies, these authors described similar neuronal
mCR in mammalian [73] and bird [74] brains and sug-
gested a role for guanine nucleotide-binding proteins in
the formation of a ternary complex of corticosterone
and the putative neuronal mCR, i.e. the mCR appears to
be coupled to G proteins [75]. Additional evidence for
the existence of a mCR was eventually provided by
Orchinik’s colleagues who solubilized and partially puri-
fied membrane-bound corticosterone binding sites from
the amphibian brain [76]; the assumed mCR had a
molecular weight of about 63 kDa, as compared to 97
kDa and 110 kDa in the case of the nGR and nMR,
respectively. More recently, studies by Johnson et al.
[77] provided anatomical evidence for the existence of
nGR within the postsynaptic density of neurons in the
rodent amygdala. At present it is unclear as to whether
there are any homologies between the mCR and either
the nGR or nMR.
Ultrastructural studies with an antibody against puri-

fied rat nGR revealed immunoreactivity associated with
the plasma membrane of rat hippocampal and hypotha-
lamic neurons [78]. Notably, membrane-associated
immunoreactive nGR sites were observed in or near
membranes covering the dendrites and somata of pyra-
midal neurons; nGR immunoreactivity was also seen in
the vicinity of the Golgi complex. With regard to the
plasma membrane, Liposits and Bohn [78] noted that
nGR immunoreactivity was associated with coated vesi-
cles which, together with their localization along the
membrane, suggested that nGR might either be trans-
ported and inserted into the plasma membrane, or
coupled to mediators of transduced signals. In this
respect, parallels may be drawn with what was reported
above with respect to the membrane-bound mediators
of estrogen actions. Palmitoylation of the nER has been
suggested as a mechanism that facilitates integration of
the nuclear receptor into (or the proximity of) the cell
membrane, thus providing access to BSA-conjugated
steroids and interactions of the receptor with mem-
brane-associated signaling proteins [79]. While it
remains to be shown that classical corticosteroid recep-
tors can be palmitoylated and trafficked to the plasma
membrane, recent studies have identified a highly con-
served 9-amino acid motif in the ligand binding domain
of estrogen, progesterone, androgen and glucocorticoid
receptors that could serve as a substrate for palmitoyla-
tion [80]; these observations suggest that palmitoylation
may be a general mechanism that allows nuclear recep-
tors to double up as bona fide membrane receptors.
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Supporting the plausibility of this view, Matthews et al.
have shown that nGR interacts with caveolin [81].
Many unliganded nuclear receptors (e.g. nGR), are

tethered in the cytoplasm through their association with
chaperone proteins such as heat shock protein 90
(hsp90); this complex is dissociated upon arrival of the
ligand [24]. Interestingly, hsp90 is known to interact
with src kinase [82], a membrane-proximal kinase
thought to mediate the rapid activation of the MAPK
pathway by corticosteroids. In addition, hsp90 interac-
tions with MEK2, another kinase upstream of MAPK,
has been shown to mediate MAPK pathway activation
by estradiol [83]. In fact, nGR itself reportedly interacts
with Raf-1, a downstream effector of Ras, and upstream
regulator of the MAPK pathway [84].
Receptors for several neurotransmitters (some of

which are ion channels) have been shown to bind CS
[76,85,86]. Although it remains unclear as to whether
these interactions serve as a conduit of the rapid actions
of CS, the latter seems plausible given the evidence that
neurosteroids can modulate chloride flux and thereby,
neuronal excitability, by binding to an allosteric site on
the GABAA receptor [87].
In summary, there is growing support for the view

that CS can initiate signaling at the plasma membrane
through one or more of the following mediatory
mechanisms: (i) G protein-coupled membrane-bound
CS receptors, (ii) steroid modulatory sites on plasma-
bound neurotransmitter receptors, (iii) interactions
between cytoplasmic CS receptors and kinase family-
interacting chaperone molecules, and/or (iv) palmitoyla-
tion. Elucidation of the mechanisms underlying the
rapid actions of CS will require a stepwise analysis of
the contributions of each member of this ‘interactome’ -
a major challenge.

From the sightlines - peeping on a rapidly
changing stage
This section will focus on the cellular endpoints that
can be used to support the view that corticosteroids
rapidly influence neuronal activity, focusing on altera-
tions in membrane excitability and signaling cascades
that originate at or close to the plasma membrane.
However, attempts to summarize the existing literature
are confronted with the fact that the results derive from
disparate protocols and experimental models in different
laboratories. For example, a wide range of corticosteroid
doses and exposure times have been applied to studying
synaptic transmission in either rat or mouse dissociated
hippocampal neurons or hippocampal slices. We will,
however, first consider early studies on hypothalamic
neurons by Kasai and colleagues and Saphier and Feld-
man, using in vitro ionotophoresis. Kasai and colleagues
showed that cortisol excited tuberoinfundibular neurons

in the paraventricular nucleus (PVN) which project to
the median eminence from where their neurosecretory
products reach the anterior pituitary; however, these
authors also reported inhibitory effects of cortisol in the
PVN, suggesting this to result from inhibition of nora-
drenergic inputs [88-90]. Saphier and Feldman, observed
a significant reduction in the spontaneous firing rates of
similar hypothalamic neurons after the application of
corticosterone [91,92]; these changes had a rapid onset
and were maintained even after iontophoresis of the
hormone was stopped. Further, they reported on a sub-
set of neurons whose activity was not altered by corti-
costerone; glutamate-induced excitation of these
neurons was however suppressed in the presence of
corticosterone.
Together, the studies described above represent a

hypothalamic electrophysiological correlate of the nega-
tive feedback control of adrenocortical secretion, and
illustrate that corticosteroids can elicit different
responses from different brain areas or neuronal popula-
tions within an anatomical region or specific neuronal
phenotypes within a given subfield; moreover, the
responses depend on neural inputs to the particular set
of neurons under investigation [91,93]. Given the sug-
gested importance of the hippocampus in mediating glu-
cocorticoid negative feedback (see above), it is surprising
that Barak [94] failed to observe any changes in the
activity of hippocampal neurons upon applying corticos-
terone. As will become evident below, despite a large
number of studies that focussed on the CA1 subfield of
the hippocampus, it is difficult to compile a consensus
view of how corticosteroids impact on the activity of
this region.
Examining spike accommodation in hippocampal neu-

rons, Vidal et al. reported that corticosterone (1 μM)
decreases spike numbers [95], whereas Joëls and de
Kloet [96] and Beck et al. [97], using 1 nM, observed
the steroid to increase spike numbers and decrease the
after-hyperpolarisation (AHP) amplitude; these effects
were abolished in the presence of spironolactone (nMR
antagonist). Importantly, 30 nM of corticosterone, which
activates nGR (as well as nMR), decreased spike num-
bers and increased AHP amplitude, leading the authors
to conclude that the bifurcating actions of low and high
doses of corticosterone reflect the activation of nMR
and nGR, respectively [96]. Further, given the gradual
rise in corticosterone levels upon arrival of a stimulus
(e.g. stress), they proposed a concentration-dependent
biphasic cellular response to corticosterone, i.e. an initial
increase in neuronal excitability, followed by suppression
of neuronal excitability. Similar findings were reported
earlier by Rey et al. (effects observed between 0.2 and
10 nM corticosterone; peak increase in spike amplitude
at 2 nM corticosterone) [98].
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Given that the amplitude of the AHP is determined by
Ca2+ and Ca2+-dependent K+ transients [99,100], it is
interesting that Landfield and colleagues reported that
high doses of the synthetic GR agonist RU28362 (7 μM)
enhance the amplitudes of voltage-dependent calcium
channel (VDCC)- mediated Ca2+ spikes in a protein
synthesis-dependent manner [101]. In contrast, Tian et
al. suggested that the increase in the slow after-hyperpo-
larization amplitude seen after exposure to high doses of
corticosterone may involve cAMP-dependent phosphor-
ylation and Ca2+-activated K+ channels [102]: dexa-
methasone (1 μM), a synthetic glucocorticoid with high
selectivity for the nGR, blocked PKA-mediated inhibi-
tion of Ca2+-activated K+ channels without influencing
VDCC-mediated Ca2+ currents in a mouse pituitary cell
line (AtT20). It should be noted that Tian et al. treated
their cells with dexamethasone for 2 h and that these
effects required de novo protein synthesis for their mani-
festation [102,103]. Because activation of NMDA recep-
tors results in an influx of Ca2+ and, as mentioned
above, Ca2+ determines the AHP amplitude [99], corti-
costeroid-NMDA receptor interactions have been ana-
lyzed in a number of studies using electrophysiological
recordings as the endpoint. For example, Wiegert et al.
showed that exposure of mouse hippocampal slices to
corticosterone (100 nM) for 20 min resulted in NMDA
receptor-mediated suppression of primed-burst potentia-
tion and synaptic potentiation [104] (induced by stimu-
lation at 10 Hz, in contrast to the more commonly-used
100 Hz LTP regimen). In contrast, theta-burst potentia-
tion (see Additional File 2 for information on different
stimulation protocols), which requires activation of both
NMDA receptors and voltage-dependent Ca2+-channels
was not affected by corticosterone treatment. The same
authors also described a role for L-type Ca2+ channels
in the synaptic actions of corticosterone [105]. In the
context of the question of whether corticosterone can
rapidly alter synaptic function, it is important to note,
however, that Wiegert et al. [104] and Chameau et al.
[105] made their electrophysiological recordings
between 1 and 6 h after initial exposure to the steroid.
On the other hand, Chameau et al. [105] found by
quantitative PCR that corticosterone did not change the
mRNA expression of the pore-forming Cav1 subunit of
the L-type Ca2+ channel, and ruled out transcriptional
mechanisms in the effects they observed.
Wiegert et al. [104] showed that RU 38486 blocks cor-

ticosterone-induced impairments of synaptic plasticity,
implying mediation of the effects by nGR. A similar
conclusion was drawn from their previous work on
GRdim/dim mice, a strain carrying a point mutation of
the DNA binding domain of the nGR which precludes
transcriptional effects; briefly corticosterone did not
influence VDCC-mediated Ca2+ currents in hippocampal

slices from GRdim/dim mice [106]. To address the ques-
tion of how glucocorticoids enhance Ca2+ currents on
the one hand, and reduce synaptic efficacy on the other,
Joëls’ laboratory examined synaptic efficacy 1-4 h after a
brief exposure to corticosterone (1 μM CORT for 20
min) [107]. Their investigations revealed that synaptic
transmission was potentiated when VDCCs were acti-
vated, and impaired only when NMDA receptors were
activated; moreover, they found that these effects were
RU 38486-sensitive, indicating their mediation by nGR.
Together, these observations point to the importance of
considering all of the individual components that contri-
bute to the overall response in field recordings. In this
respect, it is worth recalling that the magnitude of LTP
and LTD is a function of the number of AMPA recep-
tors that are present at the synaptic surface (see Addi-
tional File 2). Miniature excitatory postsynaptic currents
(mEPSCs, which represent the spontaneous release of
neurotransmitter quanta from presynaptic terminals) are
mediated by AMPA receptors and changes in the
mEPSC amplitude represent postsynaptic changes in
AMPA receptor properties and/or numbers. Indeed,
Martin et al. observed that corticosterone increases the
amplitude (but not frequency) of miniature excitatory
postsynaptic currents and demonstrated that corticoster-
one increases trafficking of the GluR1 and GluR2 subu-
nits of the AMPA receptor to the synaptic surface,
apparently through an nGR-dependent mechanism
[108]. This last study is in good agreement with that by
Karst and Joëls, who also reported nGR-mediated
increases in mEPSC amplitude [109].
Despite the overwhelming amount of data implying a

role for nGR and/or nMR in mediating the effects of
corticosterone on synaptic transmission, other evidence
indicates that the rapid actions of corticosterone are
mediated by mCR. For example, corticosterone was
shown to dose-dependently (0.1, 1, 10, 100 μM) inhibit
inward NMDA receptor-mediated currents, within sec-
onds, in primary hippocampal cultures [110]. This effect
faded upon wash-out of the hormone and was not
reversible with RU 38486; assuming that RU 38486
binds specifically to nGR, the latter finding precludes
mediation through nGR. The latter interpretation is sup-
ported by the finding that the effects of corticosterone
were reproducible with membrane-impermeable BSA-
conjugated corticosterone. Results from Takahashi et al.
also dismissed a mediatory role for nGR or nMR in the
mediation of corticosterone effects; however, they
reported that the steroid prolongs the elevation of
NMDAR-mediated Ca2+ influx in dissociated hippocam-
pal neurons independently of VDCC and mobilization
of intracellular Ca2+ stores [111]. In contrast, other
authors reported that corticosterone and BSA-corticos-
terone (30 min) inhibit the peak amplitude of NMDA
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receptor-mediated Ca2+ currents in the CA1 subfield of
the mouse hippocampus [93], that bath application of
corticosterone to hippocampal slices inhibits VDCC-
mediated Ca2+ currents within minutes [112], and that
corticosterone increases synaptosomal uptake of Ca2+

upon K+-induced depolarization [113].
At this stage, it is important to note that some of the

discrepant reports on corticosterone-induced changes in
NMDAR-mediated Ca2+ currents may reflect the differ-
ent durations of exposure to the steroid used by differ-
ent groups. In fact, Wiegert et al. defined a narrow time
window (10 min before high frequency stimulation) dur-
ing which corticosterone facilitates synaptic potentiation;
longer bath applications of the hormone were found to
impair synaptic potentiation [114].
Most of the evidence reviewed above presumes post-

synaptic sites of corticosterone action. New studies of
CA1 neurons also report changes in the frequency of
mEPSCs, thus implying presynaptic sites of action.
Thus, Karst et al. [50] and Olijslagers et al. [51] showed
that corticosterone increases the frequency of AMPA
receptor-mediated mEPSCs. Both studies show that
application of BSA-conjugated corticosterone produced
similar effects to those obtained with corticosterone,
and interestingly, that de novo protein synthesis was not
essential for their manifestation. Together, these results
hint at the involvement of receptors other than nGR
and nMR; nevertheless, nMR antagonism by spironolac-
tone resulted in a blockade of the corticosterone-
induced increases in mEPSC frequency. [50,51] [but see
[114]]. On the other hand, since RU 28362, a synthetic
nGR agonist, did not reproduce the effects of corticos-
terone, and because the effects were not antagonizable
with RU 38486, Karst et al. [50] and Olijslagers et al.
[51] proposed that the putative mCR might share iden-
tity with the nMR. The latter suggestion is supported by
experiments in mice with targeted mutations of nGR
and nMR [50,106] and work by Groc et al. [115]. Using
dissociated hippocampal cells to visualize AMPA recep-
tor trafficking, the latter authors observed increased
synaptic surface expression of GluR2 subunits of the
AMPA receptor within minutes of exposure to corticos-
terone, BSA-conjugated corticosterone or aldosterone
(the prototypic nMR agonist).
Related to the electrophysiological measures summar-

ized in the last few paragraphs, Olijslagers et al. demon-
strated that activation of the MAP kinase ERK1/2 is
crucial for the corticosterone-induced increase in
mEPSC frequency [51]. Interestingly, their experiments
showed non-dependence on postsynaptic G protein
activity on mEPSC frequency. Rather, by using the H-
Ras G12V strain of mouse which displays strong presy-
naptic activation of ERK1/2 due to constitutively high
expression of the H-Ras transgene, they suggested that

the actions of corticosterone are initiated at presynaptic
sites, increasing the probability of presynaptic neuro-
transmitter release [50,51]. Moreover, in agreement with
other studies [111], Olijslagers et al., reported that intra-
cellular Ca2+ stores do not influence mEPSC frequency
upon exposure to corticosterone [51]. Lastly, it should
be noted that although the involvement of G proteins in
corticosterone-induced changes in mEPSC frequency
were excluded [51], direct infusion of GDPbS into the
postsynaptic cell prevented the decrease of the peak
amplitude of IAcurrents (postsynaptic K+ conductance)
by corticosterone [51]; this finding points to mediation
through a postsynaptic mCR-dependent mechanism.
A number of studies suggest a role of G proteins in

the mediation of the rapid actions of corticosterone. For
example, ffrench-Mullen showed that the inhibition of
Ca2+ currents by cortisol in guinea pig CA1 neurons
depends on pertussis toxin-sensitive G-proteins [112].
The same author also showed that the effects of cortisol
are significantly diminished in the presence of PKC inhi-
bitors (BIS and PKCI 19-31), and ruled out a role for
PKA in the mediation of the actions of cortisol [112].
Similarly, Chen and Qiu showed that corticosterone
rapidly inhibits VDCC-mediated Ca2+ currents in a
phaeochromocytoma cell line of neural origin (PC12
cells), and that inhibition of G proteins by application of
either pertussis toxin or GDPbS significantly attenuates
the ability of either corticosterone or BSA-corticosterone
to stimulate the influx of Ca2+ [116]. They also demon-
strated that activation of PKC with phorbol 12-myristate
13-acetate results in an inhibition of Ca2+ entry though
VDCC after depolarization with K+, and that the appli-
cation of corticosterone activates PKC within 5-15 min-
utes. Lastly, like Qi et al. [117] who obtained similar
results in primary hippocampal neurons, Chen and Qiu
[116] showed that both, corticosterone and BSA-conju-
gated corticosterone trigger the activation of PKC and a
series of MAP kinases (ERK1/2, p38MAPK and c-Jun)
in PC-12 cells; maximum kinase activation occurred
within 15 min of application of the hormone and the
effects could not be attenuated by RU 38486.

Reality
Blood (and brain) corticosteroid levels rise and fall in a
pulsatile manner under basal (unstimulated) conditions,
and the circadian and stress-induced rises in corticoster-
one secretion occur gradually, taking minutes or even
hours to reach peak levels. This raises the question of
whether corticosteroid levels above a certain threshold
have an impact on physiology and behavior and pro-
vokes curiosity about the mechanisms that could under-
pin the rapid biological actions of corticosteroids.
Original interest in the fast actions of corticosteroids
was awakened by attempts to understand the ‘fast’ and
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‘slow’ negative feedback actions of corticosteroids at the
level of the pituitary and the brain. Pioneering research
by Mary Dallman used ingenious experimental designs
which eventually provided evidence for the rapid actions
of corticosteroids in reducing their own secretion [118]
and, as already mentioned, the search for electrophysio-
logical correlates was pursued in the hypothalamus in
parallel. Today, predominantly based on work from the
laboratories of Stafford Lightman and colleagues [4], it
would appear that the ultradian rhythmic secretion of
relatively high-amplitude corticosterone may serve to
ensure low levels of adrenocortical activity during the
organism’s resting phases; these brief pulses presumably
act rapidly to suppress brain-pituitary drive of adrenal
secretion.
At the behavioral level, Orchinik et al. [69] elegantly

demonstrated the potency of corticosterone in inhibiting
male reproductive behaviour in newts, within 8 min of
application. In mammals, Jozsef Haller and colleagues
have shown that corticosterone injections elicit aggres-
sive and anxiety-related behavior (latency of 7 min) in
rats whose endogenous adrenocortical activity is sup-
pressed by inhibition of 11b-hydroxylase activity with
metyrapone [119-121]. Several authors have also
described the ability of corticosterone to rapidly alter
locomotor behavior in rodents; for example, acute sys-
temic injections of corticosterone to rats (placed in a
novel environment) were shown to stimulate locomotion
within 7.5 minutes of administration [122].
Rhythms in the secretion of corticosteroids and other

neuromodulatory molecules can influence experimental
outcomes, even in in vitro settings. For instance, Ca2+

currents into hippocampal CA3 neurons in in vitro pre-
parations are highest during the subjective night, when
corticosterone levels are highest [123]. Similarly, Brunel
and de Montigny [124] reported that the firing rate and
pharmacological responsiveness of CA3 neurons is high-
est during the nocturnal peak in corticosterone secretion
in vivo. Importantly, using hippocampal slice cultures,
Chaudhury et al. demonstrated that the amplitude of
LTP is greatest during the subjective night [125]. Addi-
tionally, Eckel-Mahan and colleagues reported circadian
dependency in the efficiency of consolidation of long
term memory [126].
Many studies support the idea that stress, a large part

of whose actions are mediated by corticosteroids, influ-
ences learning and memory. Besides the quality and
intensity of the stressor, the context in which the stress-
ful stimulus is perceived, is an important determinant of
the behavioral outcome. The latter is more easily
explained in terms of ‘intrinsic’ and ‘extrinsic stress
[127]; ‘intrinsic stress’ refers to situations in which stress
is either elicited by, or directly associated with, the cog-
nitive experience (e.g. spatial learning), whereas

‘extrinsic stress’ describes situations in which the stress
occurs outside the context of the momentary stress
situation (e.g. foot shock stress before spatial learning).
According to a model developed by Sandi and Pinelo-
Nava [127], learning and memory will be facilitated by
stressors that activate the same (or similar) neural cir-
cuitries that are required for interpreting and respond-
ing to a particular cognitive challenge. Supporting this
view, Cahill and McGaugh [128] and Sandi [129]
reported that emotionally arousing experiences are bet-
ter remembered than neutral ones. In fear conditioning
experiments, Cordero et al. noted that post-training cor-
ticosterone levels correlate with the strength of stimulus
required to encode memories [130,131]. Moreover, the
importance of corticosterone in information acquisition
and consolidation of memory is well known, even if still
poorly understood [132-135]. The relative importance of
nMR and nGR in these processes are elegantly discussed
by Schwabe et al. [136], and Revest et al. [134] have
demonstrated a mediatory role of the MAPK pathway in
the facilitation of hippocampus-dependent contextual
fear conditioning by corticosteroids. In the previously-
cited work on long-term contextual fear memory by
Eckel-Mahan and colleagues [126], rhythms of MAPK
(ERK1/2) activation were shown to coincide temporally
with the degree of persistence of memory. Given that
corticosterone acutely increases ERK1/2 phosphorylation
[51,116,117,134], the results presented by Eckel-Mahan
and colleagues [126] should be considered in the con-
text of the hypothesis proposed by Sandi and Pinelo-
Nava [127] and the pioneering work by Oitzl and de
Kloet [137]; in addition, since the amygdala plays a
major part in the regulation of fear and has reciprocal
interactions with the hippocampus and other cognition-
regulating brain areas, future interpretations of the work
by Eckel-Mahan and colleagues [126] should embrace
the idea that corticosteroids can exert actions on a net-
work of interconnected brain structures, whose indivi-
dual responses will determine the ultimate behavioral
output.
Besides the acute behavioral and physiological actions

of corticosteroids, much research has been focused on
understanding the influence of chronically elevated cor-
ticosteroid secretion. Notwithstanding the above-men-
tioned fact that corticosteroids may exert acute effects
during the rising phase of the endocrine response to
stress, it is important to note that the latter is, generally,
a protracted one. Thus, while the acute rises in corticos-
teroid secretion may shape the overall long-term
response, the longer duration of corticosteroid exposure
after stress allows recruitment of an array of intracellu-
lar responses (including nuclear receptor-mediated
events) and cellular, physiological and behavioral adapta-
tions. It is important to note that, although the
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adrenocortical response to stress primarily serves an
adaptive purpose, in certain circumstances, it may
switch to being maladaptive, marked by transient or
chronic pathology, as discussed earlier in this article.
The physiological and behavioral responses to stress

depend on myriad molecules and processes, with an
important contribution by corticosteroids; effects of the
latter are often studied in isolation at the cost of other
contributory factors and the neural networks which reg-
ulate, or may be regulated by, corticosteroids. This can
be exemplified by considering our earlier discussion of
corticosteroid interactions with glutamatergic transmis-
sion and reports that the direction and/or magnitude of
LTP and LTD are influenced by the intensity and emo-
tional value of a given stressor; for example, LTP is only
reduced in animals exposed to uncontrollable stress
[138], but not in animals that can escape from the stres-
sor [139]. Using the paradigm of foot-shock stress,
Wang et al. reported that stress induces a shift in synap-
tic plasticity; thus, whereas stress facilitates LTD induc-
tion, it impairs LTP induction [140]. Besides showing
that these effects of stress can be blocked by RU 38486,
these last authors showed that blockade of the NMDA
receptor restores LTP inducibility in stressed animals;
further they demonstrated that stress-induced changes
in synaptic efficacy can be abolished by prior adminis-
tration of Ro25-6981, a specific antagonist of the NR2B
subunit of the NMDA receptor. A role for the NR2B
subunit in the synaptic plasticity thought to be essential
for the orchestration of the behavioral response to stress
was also suggested by Wong et al. who showed that
Ro25-6981 reverses elevated platform stress-induced
deficits in spatial learning and memory, as tested in the
Morris water maze (MWM) [141].
The NR2B subunit is predominantly associated with

extrasynaptic NMDA receptors whose activation
depends on glutamate “spill-over”, a phenomenon that
can be mimicked with threo-b-benzyloxyaspartate
(TBOA), a blocker of glutamate re-uptake. Wong et al.
[141] found that TBOA application to animals 5 min
before low frequency stimulation resulted in the suc-
cessful induction of LTD, indicating that stress leads to
glutamate “spill-over”. Linking LTD with stress-induced
memory impairment, the authors showed that prevent-
ing LTD induction by infusion of a GluR2 peptide ana-
logue that cannot be internalized abolished the ability of
stress to cause memory deficits in the MWM test; these
findings add to the evidence that acute stress results in
the internalization of AMPA receptors, followed by
synaptic depression and learning and memory deficits.
We previously discussed how the MAPK signaling

pathways may be linked with LTP and LTD (and learn-
ing and memory). In this respect, it is interesting to
note that this pathway is concomitantly activated by

stress, presumably due to activation of nGR [142,143],
believed to be essential for the phosphorylation of
ERK1/2 [134]. Moreover, the observation that tail shock
and restraint stress robustly activate ERK1/2 and impair
synaptic potentiation in the CA1 subfield suggests a
major role for the MAPK pathway in mediating the
actions of stress [144]. In addition to inducing the phos-
phorylation of ERK1/2, stress activates other kinases (e.
g. p38 MAPK, CaMKII) and pCREB within 2 min of
swim stress [145]. Surprisingly, however, the latter
responses are accompanied by a reinforcement (rather
than impairment) of LTP in the dentate gyrus of the
hippocampus. This finding indicates that different stres-
sors may elicit quite different electrophysiological
responses and/or, that the synaptic effects of stress differ
from one hippocampal subfield to another. Since the
effects of stress on biochemical and electrophysiological
signalling in the dentate gyrus were found to be subject
to modulation by serotonin [145], it is plausible that dif-
ferential monoaminergic innervation of the different
hippocampal subfields defines the ultimate cellular
response.
We summarize some potential mechanisms that may

account for the rapid and slower effects of corticoster-
oids on neuronal physiology, with a focus on synaptic
events, in Figure 4. An attempt is made to show how
signals originating at the neuronal surface are integrated
both at the synaptic and transcriptional levels.

Critique
From the preceding, it appears safe to assume that,
irrespective of the behavioural or physiological out-
comes, acute and chronic elevations of corticosteroid
secretion initiate common mechanisms and biochem-
ical processes; convergence of these events will depend
on parameters such as exposure dosage and time, as
well as the context in which they occur. Given the
potential for convergence (as well as potentiation),
improved knowledge of the initial stages of corticoster-
oid signalling, whether membrane- or nuclear recep-
tor-mediated, is clearly desirable. Studies on the rapid
neural actions of corticosteroids are likely to gain
further interest, especially as newer analytical tools
become available and knowledge about the fast actions
of other steroid hormones grows. It therefore seems
appropriate to list some critical issues and needs, the
consideration of which may foster progress through
cautious reflection:

• definition of the terms “rapid” or “fast” actions
of corticosteroids in terms of the timeframe within
which a clearly defined (electro)physiological, bio-
chemical and/or behavioural response is elicited in
animals or neuronal cell and brain slice preparations;
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• standardized test protocols (steroid dose, animal
or cellular models, and sexcof animals); in in vitro
studies, drug diffusion times and active concentra-
tions achieved at target cells should be controlled;
similarly, in in vivo research, pharmacokinetic fac-
tors, including solvent and route of administration,

should be considered; age of animals, but also of
material used for in vitro testing, is important
because of dynamic age-related changes in the
expression of key partners such as glutamate recep-
tor subunits [146]; since corticosteroids are secreted
according to a strict circadian rhythm, both the

Figure 4 Working model of sequential corticosteroid influences on synaptic physiology. Corticosterone-mediated changes in synaptic
transmission occur at different levels and in different sequential steps. ① depicts synaptic transmission under basal conditions. Neuronal
excitation results in glutamate secretion from synaptic vesicles at presynaptic sites into the synaptic cleft. Glutamate binds to postsynaptic
glutamate-gated ion channels (in particular, AMPA receptors), which open to permit ion fluxes (Na+ influx, K+ efflux) across the AMPA receptor,
resulting in a depolarization of the postsynaptic cell. Due to a voltage-dependent Mg2+ block in its membrane domain, the NMDA receptor
remains inactive under basal conditions, and is activated when a certain transmission threshold is reached. ② Exposure to corticosteroids (e.g.
during stress) may lead to activation of ERK1/2 in the presynaptic terminal (possibly through membrane corticosteroid receptors [51]); increased
glutamatergic stimulation of postsynaptic AMPA receptors results in an increase in the frequency of AMPA receptor-mediated miniature
postsynaptic currents (mEPSCs). ③ Enhanced activation of AMPA receptors in the previous step further depolarizes the postsynaptic membrane
and activates NMDA receptors. Activated NMDA receptors (Na+ and Ca2+ influx, K+ efflux) lead to further depolarization of the postsynaptic cell,
resulting in the opening of voltage-dependent Ca2+ channels (VDCC) and high postsynaptic concentrations of Ca2+. Corticosteroids may
stimulate glutamate secretion so strongly, causing glutamate “spill-over” which activates not only synaptic, but also extrasynaptic, glutamate
receptors [141]; the latter are mainly NMDA receptors of the NR2B subtype. The increased intracellular levels of Ca2+ trigger a cascade of Ca2
+-dependent signaling pathways in the postsynaptic cell, which may, in turn, induce the phosphorylation and de-phosphorylation of
postsynaptic glutamatergic receptors and of nuclear corticosteroid receptors (nMR and nGR). Activation of extrasynaptic NMDA receptors is
thought to trigger NR2B-dependent kinases, which might initiate trafficking of extrasynaptic NR2B receptors into the postsynaptic surface.
Furthermore, Ca2+-dependent signaling pathways in the postsynaptic cell participate in the regulation of AMPA receptor trafficking to and from
the synaptic surface, as indicated in ④. Phosphorylation of nuclear corticosteroid receptors, influences their translocation to the nucleus and
therefore, their transcriptional activity [32], as indicated in ⑤.
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availability of endogenous corticosteroids as well as
of primary and secondary downstream effectors will
vary over the day - this demands testing at a given
circadian time to ensure comparable measurements
[123-125].
• while surgical adrenalectomy is a useful approach
to ensure that only the actions of exogenously-admi-
nistered steroids are being recorded, the operation
requires anaesthesia and may involve potentially
confounding post-operative pain; chemical adrena-
lectomy is a good alternative (e.g. blockade of corti-
costeroid synthesis with metyrapone), but it may
have (indirect) non-selective effects on the produc-
tion of other steroids; adrenalectomy, in general,
induces massive apoptosis and stimulates neurogen-
esis in the dentate gyrus within just a few hours,
changes that probably result in reorganized neuro-
nal circuits and measurable outputs [147].
• attention to the fact that acute and chronic corti-
costeroid exposures differ significantly, and that
administration of corticosteroids only mimics an
intermediate phase of the organism’s response to
stress;
• clear exclusion of transcriptional and transla-
tional events initiated by activation of cognate
nuclear receptors;

The show must (will) go on
While the nuclear receptor-mediated actions of corticos-
teroids are well established, those that appear to be
mediated through non-classical, possibly membrane-
bound receptors, have perhaps not received sufficient
appreciation. The lack of consistent results (see need for
standardization in previous section), compounded by the
relatively fruitless hunt for putative membrane receptors,
accounts for the scepticism that haunts this area of
research. Increased respectability might be gained by
initially seeking answers to some of the following ques-
tions:

• How can the neural actions ascribed to peripher-
ally-produced corticosteroids be distinguished from
those that result from those elicited by corticoster-
oids thought to be produced in neural tissue?
• Can the rapid actions of corticosteroids observed
predominantly in the CA1 subfield of the hippocam-
pus be generalized to other hippocampal subfields,
or indeed other brain regions?
• Do the endpoints assessed after application of cor-
ticosteroids reflect actions exclusively at the hippo-
campus? In vitro, do we get only a partial (or
perhaps, false) picture? In vivo, are we monitoring
responses from a network of corticosteroid-sensitive

brain regions? How are the outputs modulated by
other neurochemical states and inputs?
• Do corticosteroids directly interact with membrane
proteins? What is the chemical identity of these
molecules? Are they distinct from the known nuclear
receptors and if not,

◦ Do they represent post-translational modifica-
tions (e.g. palmitoylated versions of the nuclear
receptors, as suggested for the mER)?
◦ Is there biochemical evidence for interactions
with other known membrane receptors (e.g. glu-
tamate receptors); do these receptors have allos-
teric binding sites for corticosteroids as well as
for pharmacological antagonists of nMR and
nGR? (cf. estrogens, progestins)

• How do events that are triggered by corticosteroids
at the membrane funnel into long-term cellular and
organismic adaptations (e.g. by positive or negative
priming of the gene machinery regulated by nMR
and nGR)?
• How do the rapid actions of corticosteroids contri-
bute to their longer-lasting actions (e.g. ‘priming’ of
nuclear receptor-mediated events?)
• Is it possible to define corticosteroid actions - fast
and slow - in terms of spatio-temporal maps, keep-
ing in mind that damage induced in a relatively
short time in one area may take longer to spread to
other interconnected areas [cf. [13]]?
• Is it feasible to generate genetic or pharmacological
tools that will facilitate acceptance and further study
of mCR?

Appendix
a) Corticosteroids: way upstream - the title of this
article is adapted from Alan Ayckbourne’s stage play
Way Upstream in which two couples on a boating
holiday run into some strange happenings.
b) A painted cloth in front of which a short scene is
played while the main stage set is changed.
c) Research on the rapid actions of corticosteroids
has mainly exploited male rodents or tissues derived
from them. Corticosteroid secretion is strongly influ-
enced by sex, as are physiology and behaviour. Many
of the physiological and behavioural readouts moni-
tored in such studies reflect the prevailing sex ster-
oid milieu; in females, sex steroids are secreted in a
cyclical fashion.

Additional file 1: Summary of rapid effects of corticosteroids and
estrogens on the central nervous system [148-181].
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1756-6606-3-2-
S1.PDF ]
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Additional file 2: Synaptic plasticity and learning and memory [182-
221].
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1756-6606-3-2-
S2.PDF ]
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