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Abstract

Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An
increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the
major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death
via diverse routes, the major pathway appears to involve oxidative stress.
Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysoso-
mal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The
source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release
zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central ner-
vous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothio-
nein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote
neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal
functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and
-2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual
effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization
are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lyso-
somal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.
The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investi-
gated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various
neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may
help provide ways to effectively regulate these processes in brain cells.

Introduction
Cells have two major protein degradation pathways: the
ubiquitin-proteasome system (UPS), which mainly acts to
clear and recycle short-lived proteins [1], and macroauto-
phagy or autophagy, in which lysosomal degradation is
the final event [2]. This latter pathway degrades waste
proteins and organelles, recycling damaged organelles
and large proteins that cannot be processed via the UPS.
The autophagic pathway usually operates at low levels
under normal conditions, but is rapidly upregulated
under stress conditions, such as starvation, hormonal

imbalances, and oxidative stress [2-4]. Whereas autopha-
gic degradation releases free amino acids and fatty acids
that serve to meet the energy demands of cells in starva-
tion [5], it also removes potentially detrimental abnormal
organelles and misfolded proteins [6].
During the last decade, abnormalities in autophagy

have been suggested to play roles in the pathogenesis of
cancer and neurodegenerative disease, among other dis-
orders [7-15]. For instance, a reduction in autophagy is
observed in various cancer cells [16-18], and internal or
external activators of autophagy, such as Beclin-1
(BECN1), transforming growth factor-b (TGF-b), and
rapamycin, have been shown to effectively reduce tumor
mass in human hepatocellular carcinoma cells and xeno-
grafted breast cancer cell lines [19-21]. There is also
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evidence for reduced or blocked autophagy in various
neurodegenerative conditions, including Alzheimer’s dis-
ease, Parkinson’s disease, Niemann-Pick type C disease,
and Huntington’s disease [22-26]. Consistent with this,
downregulation of autophagy-activating genes in the
brain results in severe neurodegeneration [23,27,28].
Given the potential clinical importance of autophagy,
there has been rapidly increasing interest in investigating
this process in various disease models.
Recently, we reported that zinc and metallothionein 3

(MT3) have modulatory effects on autophagic vacuole
(AV) formation and lysosomal changes in cultured brain
cells [29-31]. Zinc serves many essential functions in the
body under normal conditions; it is enriched in all cells,
and is absolutely required for cellular development and
survival [32,33]. Accordingly, a severe zinc deficiency
causes developmental anomalies in humans and animals
[34-36]. On the other hand, increased free zinc levels in
a cell can be highly cytotoxic. The toxic role of endo-
genous zinc has been extensively studied, especially in
the context of acute brain injury [37-41], where zinc has
been shown to be capable of causing cell death through
diverse mechanisms. For instance, high levels of intracel-
lular free zinc can activate protein kinase C (PKC), nico-
tinamide adenine dinucleotide phosphate (NADPH)
oxidases [42], p38 mitogen-activated protein kinase
(MAPK) [43-45], poly ADP-ribose polymerase (PARP)
[46,47], p75NTR-associated death executor (p75NTR/
NADE), and apoptosis-inducing factor (AIF) [48-50].
Because cells are vulnerable to drastic changes in

intracellular free zinc, they are equipped with a number
of proteins that function to regulate zinc levels. For
instance, zinc transporters (ZnTs) and Zrt- and Irt-like
proteins (ZIPs) function to transfer zinc across mem-
branes [51,52]. In addition, cysteine-rich metallothio-
neins may function as zinc buffers inside cells. Of the
metallothioneins (MTs), MT3 is especially enriched in
the brain [53,54]. Some MT3 zinc-binding sites are
redox modulated, allowing MT3 to accept and release
zinc in response to changes in oxidative status [53-57].
Because MT3 can induce or reduce zinc toxicity
depending on context, it may increase or decrease brain
injury, depending on the particular state of MT3. For
example, if apo-forms are predominant, MT3 may
accept zinc, acting as a buffer against rising intracellular
zinc levels. In contrast, if zinc-binding cysteine residues
of MT3 are oxidized, MT3 may release zinc and cause
more cell death.
However, our recent findings suggest that MT3 may

have more complex effects on cell biology than simply
functioning as a zinc buffer. For instance, astrocytes
from MT3-null mice show altered activity of lyso-
somes–the endpoint in the autophagy pathway [31].
Here, we review the possible roles of zinc and MT3 in

autophagy activation and lysosomal changes under
oxidative stress conditions.

Increases in Zinc under Oxidative Stress Conditions: Role
in Neuronal and Glial Cell Death
The central nervous system contains high levels of zinc,
which is present at about 70-80 ppm in gray matter
[58]. Whereas the majority of brain zinc is tightly bound
to proteins, about 10-20% is localized to certain gluta-
matergic vesicles in a relatively free state (chelatable
zinc) [59-61]. This synaptic zinc may be released upon
neuronal activation, and is involved in signal transmis-
sion/transduction across synapses [35,62-65]. However,
in acute brain injury, the rise of intracellular free zinc
levels contributes to neuronal and astrocytic cell death
[37,66-70]. For example, zinc-induced neurotoxicity is
observed following acute brain injury, such as trauma,
seizures, and ischemia [35,37,38,71-75]. Whereas synap-
tic zinc may trigger toxic cascades in areas such as the
hippocampal CA3 region, where synaptic zinc is espe-
cially enriched in mossy fiber terminals [76,77], intracel-
lular zinc release may play a larger role in most other
brain regions [77-79].
Calcium-overload excitotoxicity is still considered to

be the major mechanism of neuronal death in acute
brain injuries, including focal ischemia [80-82]. How-
ever, calcium excitotoxicity alone may not be a sufficient
to produce infarcts, in which astrocytes and oligoden-
drocytes, which are much less vulnerable to glutamate
[83-85], are also severely damaged. Hence, factors that
contribute to non-neuronal cell death need to be identi-
fied. In our previous study, we found that the infarct
core exhibits markedly increased levels of labile zinc in
all cellular elements [86,87], raising the possibility that
zinc toxicity may contribute to infarct formation. In
fact, oxidative stress, which usually accompanies focal
ischemia, induces increases in labile zinc in astrocytes as
well as neurons [37,88-90].
So, which toxic mechanisms does zinc trigger inside

cells? Studies over the last decade have suggested a
number of different mechanisms that may mediate zinc
neurotoxicity. Activation of PKC, NADPH oxidases,
extracellular signal regulated kinase 1/2 (ERK-1/2), and
PARP by zinc has been shown to cause mainly oxidative
neuronal necrosis [35,42]. In addition, caspase-mediated
apoptosis is induced by the activation of the p75NTR/
NADE pathway and by AIF released from mitochondria
in zinc-exposed neurons [48-50,91].

Lysosomal Membrane Permeabilization and Zinc
In addition to the above-mentioned mechanisms for
zinc toxicity, we have recently presented evidence that
lysosomal changes may underlie zinc-induced cell death
(Figure 1) [29]. The lysosome is an acidic cytosolic
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vesicle that contains numerous (>80) acidic hydrolases–
glycosidases, phosphatases, proteases, nucleases, pepti-
dases, sulphatases and lipases–that collectively are cap-
able of degrading all cellular components. As such, the
lysosome serves as the main degradative factory in cells,
receiving cargoes from phagosomes, endosomes, and
autophagosomes. Because lysosomal acidic hydrolases
are so potent, their release in combination with cytosolic
acidification can cause cell death through severe break-
down of cellular components as well as activation of cell
death inducers, such as BID. This process is termed
lysosomal membrane permeabilization (LMP) [92].
LMP has been shown to occur in cell death caused by

oxidative stress, calcium overload, p53 activation, and
exposure to lysosomotrophic toxins such as sphingosine
[92,93]. Moreover, several cancer chemotherapeutic
agents have been shown to induce lysosomal changes,
including LMP, in diverse cancer cell types [2]. In the
brain, epileptic injury and ischemic injury may cause
LMP in certain neurons, inducing their death [5,8,29],

and lysosomal enzyme inhibitors may be neuroprotective
against ischemic insults [94-96].
Recently, we presented evidence that LMP is a key

contributor to oxidative and zinc-induced hippocampal
neuronal death [29]. The salient features of this mechan-
ism are as follows: Under normal conditions, free zinc
levels in lysosomes are low. Following exposure to H2O2

or toxic levels of zinc, the level of zinc in lysosomes rises
rapidly and significantly. Next, a substantial fraction of
zinc-laden lysosomes undergo membrane disintegration,
releasing enzymes such as cathepsins. Finally, hippocampal
neuronal death occurs in a zinc- and cathepsin-dependent
manner. These results indicate that zinc-overload in lyso-
somes and lysosomal disruption are key events in oxidative
neuronal death (Figure 1). Interestingly, lysosomes also
accumulate 4-hydroxy-2-nonenal (HNE) adducts in a
zinc-dependent manner, and HNE per se causes LMP,
suggesting that HNE may be one of mediators of lysoso-
mal derangement in oxidative and/or zinc-mediated neu-
ronal death (Figure 1). Further studies will be needed to

Figure 1 Summary diagram depicting zinc and MT3 effects on autophagy and lysosomes. A. Under physiological conditions, normal
signaling involving zinc release from MT3 contributes to the normal progression of autophagy, resulting in the degradation of abnormal protein
aggregates and waste organelles. This pathway may be beneficial for cell survival. B. Under injurious oxidative stress conditions (e.g., H2O2 or
HNE treatment), the events described in (A) are exaggerated. Hence, much more intense zinc release from MT3 is induced, and excess
autophagy is activated. Excess autophagy and excess zinc accumulation in lysosomes ultimately leads to LMP and cell death. C. Downregulation
of MT3 decreases zinc release from MT3, inhibiting lysosomal functions and reducing fusion between autophagosomes and lysosomes, resulting
in a reduced autophagy flux. Under conditions of acute injury, this results in a reduction in both LMP and cell death, but it can be detrimental
to cell survival under conditions of chronic stress by reducing autophagic degradation of abnormal proteins.
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firmly establish the relationship between known signaling
events in zinc toxicity and LMP.
The role of various organelles in cell death has been

extensively studied in recent years. Initially, the focus
was on mitochondria, since this organelle is the main
site of reactive oxygen species (ROS) generation and
because it also contains and/or releases several apopto-
sis-regulating molecules, including B-cell lymphoma 2
(Bcl-2), Bcl-2-associated X protein (Bax), AIF, and cyto-
chrome c [15]. More recently, the endoplasmic reticu-
lum (ER) has received increasing research attention. ER
stress plays an integral role in the unfolded protein-
induced alarm system that activates multiple signaling
pathways, including MAPK, c-Jun N-terminal kinase
(JNK), p38 MAPK, and nuclear factor-�B (NF-�B) path-
ways [97-101]. Similarly, a recent surge in interest in
autophagy has brought the lysosome to the fore as
another organelle with a major role to play in cell death
mechanisms. In this context, the possibility that cellular
free zinc may function as a link between oxidative stress
and LMP is particularly intriguing.
Then what is the mechanism underlying lysosomal

zinc accumulation? One possible answer is that the
accumulation of zinc in lysosomes may be an exagger-
ated version of a normal physiologic event, involving the
transport of zinc from the cytosol via certain metal
transporters or ionophores. In this case, zinc may serve
as an activator of lysosomal functions. Alternatively,
zinc accumulation may merely be a result of lysosomal
activation, reflecting zinc release from various zinc-bind-
ing proteins inside lysosomes. Although it is unclear
which is the case, the demonstration that the cell-per-
meant zinc chelator TPEN (tetrakis[2-pyridylmethyl]
ethylenediamine) not only blocks the rise in free zinc
levels in lysosomes but also inhibits LMP tends to favor
the former possibility. The precise inter-organelle zinc
dynamics within cells warrant further investigation.

Autophagy and Zinc
The finding that zinc dyshomeostasis is closely con-
nected to lysosomes, the effector organelle for autop-
hagy, prompted us to investigate the possible role of
zinc in the entire autophagic cascade. Autophagy means
“self-eating” in Greek [6,102]. It is evolutionally con-
served in all eukaryotes and serves the essential
self-digestive function of degrading large proteins and
organelles [3,103].
Of the three known types of autophagy–macroauto-

phagy, microautophagy, and chaperone-mediated autop-
hagy [6,104,105]–macroautophagy (or simply autophagy)
is the best characterized. Recent advances in the mole-
cular biology of autophagy have led to the identification
of a number of proteins required for this process,
including the autophagy-related homologs, BECN1 and

ATG5. Microtubule-associated membrane protein-II
(LC3-II), another autophagy-related protein, is inserted
into the outer membrane of autophagosomes and has
been used as a marker for autophagic activation
[106,107]. LC3-II is quite stable and hence easy to
detect. Transfection with GFP- or RFP-LC3 has been
widely used to monitor the autophagic process in living
cells.
Recently, we used this approach in cultured astrocytes,

which are easier to transfect than primary neurons. In
astrocytes, inducers of oxidative stress such as H2O2 or
FeCl2 activate autophagy, as evidenced by increased
LC3-II levels and autophagosome formation (Figure 1).
Interestingly, zinc accumulation occurs in autophago-
somes as it does in lysosomes [30]. Importantly, TPEN
blocks the activation of autophagy by oxidative stress,
suggesting that zinc accumulation has already started at
the level of autophagosomes and plays a role in autop-
hagy progression. It is not yet known whether specific
zinc transporters are responsible for the zinc accumula-
tion. Moreover, it is possible that TPEN effect is not
due to chelation of zinc inside autophagosomes, but
may instead reflect effects on upstream elements in the
signaling cascade, such as inhibition of phosphatidylino-
sitol 3-kinase type III (PI3K type III) activation. In either
case, these data represents the first demonstration that
cellular zinc may play a role in activation of the autop-
hagic process. Whether autophagy thus activated is
functional (i.e., increases autophagic flux) will require
additional study; however, the fact that mutant hunting-
tin protein (mHttp) aggregation is reduced under these
conditions suggests that this may be the case.
One interesting question is whether the role of zinc in

autophagy and LMP is limited to brain cells or is more
generally applicable to other cell types. The fact that
tamoxifen-induced autophagic cell death in MCF-7
breast cancer cells [14] exhibits similar features, such as
zinc accumulation in AVs and LMP [29,30], suggests
that zinc may play a role in autophagy and autophagic
cell death in general. If confirmed, which will require
addition testing in other cell types and diverse models,
modulation of zinc levels may prove to be an effective
therapeutic intervention under conditions in which
abnormalities in autophagy are contributing factors,
such as cancer and neurodegenerative disorders.

MT3: the Source for Zinc in Neurons and Astrocytes
Human genome analyses have revealed that more than a
thousand proteins may contain zinc-binding motifs
[108]. However, most of these proteins bind zinc tightly,
and hence may not normally contribute to fast zinc
dynamics in cells. In contrast, some proteins, such as
MTs, contain zinc-binding sites that are highly sensitive
to redox states [25,109-114]. When cells are exposed to
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reducing conditions or when cellular free zinc levels
rise, apo-forms of MTs (thioneins) may bind more zinc.
Conversely, under conditions in which cells are exposed
to oxidative stress and during signaling events involving
ROS generation, MTs may serve as zinc-donors, raising
free zinc levels (Figure 1) [114]. Consistent with this,
diverse cells exhibit a rise in free zinc levels in response
to stressful extracellular or intracellular stimuli, includ-
ing hormones, cytokines, metals, inflammation, oxidative
agents, and other stresses [115-118]. This increase in
free zinc may stimulate diverse cellular-response signals
[109,110,119,120]
Four isoforms of MT, MT1-4, have been identified in

mammals, all of which have seven metal binding
domains [113,121-124]. MT1 and MT2 are ubiquitously
expressed in all tissues. In contrast, MT3 and MT4 are
expressed mainly (although not exclusively) in the cen-
tral nervous system and squamous epithelia [125-128].
Hence, it is likely that, at least in the brain, MT3 may
serve as a key source for dynamically exchangeable zinc
in cells exposed to various stress stimuli.
MT3 was originally identified as a neuronal growth

inhibitory factor that inhibited outgrowth of rat cortical
neurons in the presence of Alzheimer’s disease brain
extracts [57]. This effect is not shared by MT1 or MT2,
and is probably due to the unique presence of a TCPCP
motif within the b-domain of MT3 [117,122,129-131].
The precise mechanism underlying the neurite out-
growth-inhibitory effect of MT3 remains poorly under-
stood, but a number of studies have implicated MT3 in
various neurological conditions. Altered MT3 expression
has been also reported in amyotrophic lateral sclerosis
(ALS) [54], Down syndrome [132], pontosubicular
necrosis [133], Parkinson’s disease, meningitis, and
Creutzfeld-Jakob disease [134].
In addition, MT3 appears to exert both protective and

injury-promoting effects in experimental models of
brain injury. The neuroprotective effects of MT3, which
are presumably due to its metal-chelating and antioxida-
tive effects, are evident in epileptic brain injury [135],
cortical cryolesions [136], a mutant superoxide dismu-
tase 1 (SOD1[G93A]) mouse model of ALS [137], and
peripheral nerve injury [138]. Several researchers have
demonstrated the opposite phenomenon, showing for
example that intracellular zinc released from MT3 may
trigger neuronal death in vivo [77] and in vitro [31],
indicating the injury-promoting effects of MT3 [54,56].
In adult brains, MT3 is predominantly expressed in

neurons, but in developing brains it is also significantly
expressed in astrocytes. We have demonstrated that the
increase in intracellular free zinc induced by oxidative
injury is significantly reduced in cultured MT3-null
astrocytes compared with wild-type cells (Figure 1) [31].
Moreover, cell death is also attenuated in MT3-null

cells. These results provide additional support for the
idea that MT3 is the main source for elevations in toxic
free zinc in acute brain injury. Interestingly, although
astrocytes express substantial amounts of MT1 and
MT2 [120], experiments employing small interfering
RNAs suggest that these MTs do not participate as zinc
donors.

Regulation of Lysosomal Functions by MT3
MT3 may have complex biological functions that extend
well beyond its role as a simple buffer for zinc, as exem-
plified by its initial identification as a neuronal growth
inhibitory factor. Recently, we found that MT3 may reg-
ulate the levels of lysosomal proteins, thus regulating
the function of lysosomes [31]. Specifically, the absence
of MT3 in astrocytes results in changes in the levels of
LMP and altered LMP glycosylation patterns (Figure 1).
Such changes may inhibit docking of upstream vesicles,
such as autophagosomes and endosomes, to lysosomes.
In fact, the levels of autophagic markers such as LC3-II
are markedly increased in astrocytes from MT3-null
mice (Figure 1).
Another interesting change induced by the absence of

MT3 is a reduction in certain hydrolase activities that
implies a decrease in lysosomal protein degradative cap-
ability. The combination of reduced zinc levels and
reduced lysosomal enzyme levels may act to attenuate
LMP and cell death (Figure 1). Moreover, decreased
lysosomal function should lead to diminished autophagic
flux. Consistent with this, we found that cholesterol
metabolism was altered and mHttp aggregates accumu-
lated in the absence of MT3 [31].
How does MT3 regulate lysosomal functions?

Although the available information provides little insight
into this question, one report notes that disruption of
c-Abl, a member of the Abelson family of cytoplasmic
non-receptor tyrosine kinases, has effects on lysosomes
in the A549 alveolar carcinoma cell line that are similar
to those observed in brain cells lacking MT3 [139]. This
suggests that MT3 may be involved in the c-Abl signal-
ing cascade in brain cells. Alternately, adequate free zinc
levels may be required to maintain normal lysosomal
function. Further studies may help determine the
mechanism(s) underlying MT3 effects on lysosomes.
Regardless of the mechanism, because lysosomal func-
tion is linked to autophagy and neurodegenerative disor-
ders, MT3 may prove to be a suitable target for drugs
designed to control lysosomal function. By reducing
toxic zinc accumulation, LMP, and cell death, downre-
gulation of MT3 function may be beneficial in acute
brain injury (Figure 1). Conversely, in neurodegenerative
conditions in which the accumulation of protein aggre-
gates contributes to the pathology, upregulation of
MT3, and the associated enhancement in lysosomal
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function and protein degradation, may be beneficial
(Figure 1).

Conclusions
Recent studies have revealed that free zinc levels change
in various organelles in response to physiologic or
pathological stimuli, and suggest important functional
consequences of these zinc dynamics. One aspect of this
larger picture–the possible roles of free zinc in autopha-
gic and lysosomal functions–has been the focus of this
review. Under oxidative stress conditions, free zinc levels
in the cytosol and lysosomes of cultured neurons and
astrocytes rise, ultimately resulting in LMP and cell
death. While this change may contribute to the cell
death that occurs after acute brain injury, the fact that
free zinc levels rise in AVs (autophagosomes and autoly-
sosomes) following various stimuli is also notable.
Because reducing the levels of free zinc with TPEN
blocks all these changes, the rise of free zinc in AVs
may play a role in the progression of the autophagic
cascade. In brain cells, the source of free zinc may be
MT3. In support of a role for MT3 in lysosomal func-
tion, the absence of MT3 results in drastic changes in
the levels of lysosomal proteins and results in reduced
lysosomal degradative capacity. Further studies will be
needed to elucidate the mechanism by which MT3 regu-
lates lysosomal functions.

Acknowledgements
This work was supported by the Korea Scicence and Engineering
Foundation (KOSEF) through the National Research Lab Program (KOSEF
2010-0002152 and KOSEF 2010-0007999), by a Korea Research Foundation
Grant (MOEHRD 2009-0093836) funded by the Korean Ministry of Education
and Human Resources Development.

Author details
1Neural Injury Research Center, Department of Neurology, Asan Institute for
Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea.
2Neural Injury Research Center, Asan Institute for Life Science, University of
Ulsan, College of Medicine, Seoul 138-736, Korea.

Authors’ contributions
All authors participated in developing and discussing the ideas, integrating
the information, and writing the manuscript. All authors have read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 24 September 2010 Accepted: 26 October 2010
Published: 26 October 2010

References
1. Nedelsky NB, Todd PK, Taylor JP: Autophagy and the ubiquitin-

proteasome system: collaborators in neuroprotection. Biochim Biophys
Acta 2008, 1782:691-699.

2. Kroemer G, Jaattela M: Lysosomes and autophagy in cell death control.
Nat Rev Cancer 2005, 5:886-897.

3. Farre JC, Subramani S: Peroxisome turnover by micropexophagy: an
autophagy-related process. Trends Cell Biol 2004, 14:515-523.

4. Kundu M, Thompson CB: Autophagy: basic principles and relevance to
disease. Annu Rev Pathol 2008, 3:427-455.

5. Yamashima T, Oikawa S: The role of lysosomal rupture in neuronal death.
Prog Neurobiol 2009, 89:343-358.

6. Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease
through cellular self-digestion. Nature 2008, 451:1069-1075.

7. Yue Z, Wang QJ, Komatsu M: Neuronal autophagy: going the distance to
the axon. Autophagy 2008, 4:94-96.

8. Windelborn JA, Lipton P: Lysosomal release of cathepsins causes
ischemic damage in the rat hippocampal slice and depends on NMDA-
mediated calcium influx, arachidonic acid metabolism, and free radical
production. J Neurochem 2008, 106:56-69.

9. Uchiyama Y, Koike M, Shibata M, Sasaki M: Autophagic neuron death.
Methods Enzymol 2009, 453:33-51.

10. Levine B: Cell biology: autophagy and cancer. Nature 2007, 446:745-747.
11. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell

2008, 132:27-42.
12. Liu C, Gao Y, Barrett J, Hu B: Autophagy and protein aggregation after

brain ischemia. J Neurochem 2010, 115:68-78.
13. Huang C, Yitzhaki S, Perry CN, Liu W, Giricz Z, Mentzer RM Jr, Gottlieb RA:

Autophagy induced by ischemic preconditioning is essential for
cardioprotection. J Cardiovasc Transl Res 2010, 3:365-373.

14. Hwang JJ, Kim HN, Kim J, Cho DH, Kim MJ, Kim YS, Kim Y, Park SJ, Koh JY:
Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in
MCF-7 breast cancer cell line. Biometals .

15. Chakrabarti L, Eng J, Ivanov N, Garden GA, La Spada AR: Autophagy
activation and enhanced mitophagy characterize the Purkinje cells of
pcd mice prior to neuronal death. Mol Brain 2009, 2:24.

16. Gozuacik D, Kimchi A: Autophagy as a cell death and tumor suppressor
mechanism. Oncogene 2004, 23:2891-2906.

17. Yousefi S, Simon HU: Autophagy in cancer and chemotherapy. Results
Probl Cell Differ 2009, 49:183-190.

18. Kisen GO, Tessitore L, Costelli P, Gordon PB, Schwarze PE, Baccino FM,
Seglen PO: Reduced autophagic activity in primary rat hepatocellular
carcinoma and ascites hepatoma cells. Carcinogenesis 1993, 14:2501-2505.

19. Huynh H, Teo CC, Soo KC: Bevacizumab and rapamycin inhibit tumor
growth in peritoneal model of human ovarian cancer. Mol Cancer Ther
2007, 6:2959-2966.

20. Kiyono K, Suzuki HI, Matsuyama H, Morishita Y, Komuro A, Kano MR,
Sugimoto K, Miyazono K: Autophagy is activated by TGF-beta and
potentiates TGF-beta-mediated growth inhibition in human
hepatocellular carcinoma cells. Cancer Res 2009, 69:8844-8852.

21. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H,
Levine B: Induction of autophagy and inhibition of tumorigenesis by
beclin 1. Nature 1999, 402:672-676.

22. Liao G, Yao Y, Liu J, Yu Z, Cheung S, Xie A, Liang X, Bi X: Cholesterol
accumulation is associated with lysosomal dysfunction and autophagic
stress in Npc1 -/- mouse brain. Am J Pathol 2007, 171:962-975.

23. Pan T, Kondo S, Le W, Jankovic J: The role of autophagy-lysosome
pathway in neurodegeneration associated with Parkinson’s disease. Brain
2008, 131:1969-1978.

24. Winslow AR, Rubinsztein DC: Autophagy in neurodegeneration and
development. Biochim Biophys Acta 2008, 1782:723-729.

25. Cheung ZH, Ip NY: The emerging role of autophagy in Parkinson’s
disease. Mol Brain 2009, 2:29.

26. Lorenzen A, Samosh J, Vandewark K, Anborgh PH, Seah C, Magalhaes AC,
Cregan SP, Ferguson SS, Pasternak SH: Rapid and direct transport of cell
surface APP to the lysosome defines a novel selective pathway. Mol
Brain 2010, 3:11.

27. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-
Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, et al: Suppression
of basal autophagy in neural cells causes neurodegenerative disease in
mice. Nature 2006, 441:885-889.

28. Lee JA: Autophagy in neurodegeneration: two sides of the same coin.
BMB Rep 2009, 42:324-330.

29. Hwang JJ, Lee SJ, Kim TY, Cho JH, Koh JY: Zinc and 4-hydroxy-2-nonenal
mediate lysosomal membrane permeabilization induced by H2O2 in
cultured hippocampal neurons. J Neurosci 2008, 28:3114-3122.

30. Lee SJ, Cho KS, Koh JY: Oxidative injury triggers autophagy in astrocytes:
the role of endogenous zinc. Glia 2009, 57:1351-1361.

Lee and Koh Molecular Brain 2010, 3:30
http://www.molecularbrain.com/content/3/1/30

Page 6 of 9

http://www.ncbi.nlm.nih.gov/pubmed/18930136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18930136?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16239905?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15350980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15350980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18039129?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19772886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18305538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18305538?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18000396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18000396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18363826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19216901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17429391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18191218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20633207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20559777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20559777?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20524045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20524045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19640278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19640278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19640278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15077152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15077152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19142622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8269618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8269618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18025280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19903843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19903843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19903843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10604474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10604474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17631520?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18187492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18187492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18644437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18644437?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19754977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19754977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20409323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20409323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16625204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16625204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16625204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19558789?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18354014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19229997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19229997?dopt=Abstract


31. Lee SJ, Park MH, Kim HJ, Koh JY: Metallothionein-3 regulates lysosomal
function in cultured astrocytes under both normal and oxidative
conditions. Glia 2010, 58:1186-1196.

32. MacDonald RS: The role of zinc in growth and cell proliferation. J Nutr
2000, 130:1500S-1508S.

33. Prasad AS: Zinc in growth and development and spectrum of human
zinc deficiency. J Am Coll Nutr 1988, 7:377-384.

34. Fosmire GJ, Fosmire MA, Sanstead HH: Zinc deficiency in the weanling rat:
effects on liver composition and polysomal profiles. J Nutr 1976,
106:1152-1158.

35. Frederickson CJ, Koh JY, Bush AI: The neurobiology of zinc in health and
disease. Nat Rev Neurosci 2005, 6:449-462.

36. Sandstead HH, Prasad AS, Schulert AR, Farid Z, Miale A Jr, Bassilly S,
Darby WJ: Human zinc deficiency, endocrine manifestations and
response to treatment. Am J Clin Nutr 1967, 20:422-442.

37. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW: The role of zinc in
selective neuronal death after transient global cerebral ischemia. Science
1996, 272:1013-1016.

38. Choi DW, Koh JY: Zinc and brain injury. Annu Rev Neurosci 1998,
21:347-375.

39. Frederickson CJ, Maret W, Cuajungco MP: Zinc and excitotoxic brain
injury: a new model. Neuroscientist 2004, 10:18-25.

40. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL: Zinc
dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis
2005, 8:93-108, discussion 209-115.

41. Kim EY, Koh JY, Kim YH, Sohn S, Joe E, Gwag BJ: Zn2+ entry produces
oxidative neuronal necrosis in cortical cell cultures. Eur J Neurosci 1999,
11:327-334.

42. Koh JY: Zinc and disease of the brain. Mol Neurobiol 2001, 24:99-106.
43. Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E,

Gotz T, Han J, Ellisman MH, Perkins GA, et al: Crosstalk between nitric
oxide and zinc pathways to neuronal cell death involving mitochondrial
dysfunction and p38-activated K+ channels. Neuron 2004, 41:351-365.

44. He K, Aizenman E: ERK signaling leads to mitochondrial dysfunction in
extracellular zinc-induced neurotoxicity. J Neurochem 2010, 114:452-461.

45. Seo SR, Chong SA, Lee SI, Sung JY, Ahn YS, Chung KC, Seo JT: Zn2
+-induced ERK activation mediated by reactive oxygen species causes
cell death in differentiated PC12 cells. J Neurochem 2001, 78:600-610.

46. Hwang JJ, Choi SY, Koh JY: The role of NADPH oxidase, neuronal nitric
oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal
death induced in cortical cultures by brain-derived neurotrophic factor
and neurotrophin-4/5. J Neurochem 2002, 82:894-902.

47. Suh SW, Aoyama K, Alano CC, Anderson CM, Hamby AM, Swanson RA: Zinc
inhibits astrocyte glutamate uptake by activation of poly(ADP-ribose)
polymerase-1. Mol Med 2007, 13:344-349.

48. Mukai J, Hachiya T, Shoji-Hoshino S, Kimura MT, Nadano D, Suvanto P,
Hanaoka T, Li Y, Irie S, Greene LA, et al: NADE, a p75NTR-associated cell
death executor, is involved in signal transduction mediated by the
common neurotrophin receptor p75NTR. J Biol Chem 2000,
275:17566-17570.

49. Park JA, Lee JY, Sato TA, Koh JY: Co-induction of p75NTR and p75NTR-
associated death executor in neurons after zinc exposure in cortical
culture or transient ischemia in the rat. J Neurosci 2000, 20:9096-9103.

50. Jiang D, Sullivan PG, Sensi SL, Steward O, Weiss JH: Zn(2+) induces
permeability transition pore opening and release of pro-apoptotic
peptides from neuronal mitochondria. J Biol Chem 2001, 276:47524-47529.

51. Harris ED: Cellular transporters for zinc. Nutr Rev 2002, 60:121-124.
52. Liuzzi JP, Cousins RJ: Mammalian zinc transporters. Annu Rev Nutr 2004,

24:151-172.
53. Maret W: The function of zinc metallothionein: a link between cellular

zinc and redox state. J Nutr 2000, 130:1455S-1458S.
54. Uchida Y: Growth-inhibitory factor, metallothionein-like protein, and

neurodegenerative diseases. Biol Signals 1994, 3:211-215.
55. Maret W: Cellular zinc and redox states converge in the metallothionein/

thionein pair. J Nutr 2003, 133:1460S-1462S.
56. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M: Metallothionein in the

central nervous system: Roles in protection, regeneration and cognition.
Neurotoxicology 2008, 29:489-503.

57. Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M: The growth inhibitory
factor that is deficient in the Alzheimer’s disease brain is a 68 amino
acid metallothionein-like protein. Neuron 1991, 7:337-347.

58. Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB: Cytoarchitectonic
distribution of zinc in the hippocampus of man and the rat. Brain Res
1983, 273:335-339.

59. Budde T, Minta A, White JA, Kay AR: Imaging free zinc in synaptic
terminals in live hippocampal slices. Neuroscience 1997, 79:347-358.

60. Danscher G, Howell G, Perez-Clausell J, Hertel N: The dithizone, Timm’s
sulphide silver and the selenium methods demonstrate a chelatable
pool of zinc in CNS. A proton activation (PIXE) analysis of carbon
tetrachloride extracts from rat brains and spinal cords intravitally treated
with dithizone. Histochemistry 1985, 83:419-422.

61. Frederickson CJ, Suh SW, Silva D, Thompson RB: Importance of zinc in the
central nervous system: the zinc-containing neuron. J Nutr 2000,
130:1471S-1483S.

62. Assaf SY, Chung SH: Release of endogenous Zn2+ from brain tissue
during activity. Nature 1984, 308:734-736.

63. Frederickson CJ, Bush AI: Synaptically released zinc: physiological
functions and pathological effects. Biometals 2001, 14:353-366.

64. Howell GA, Welch MG, Frederickson CJ: Stimulation-induced uptake and
release of zinc in hippocampal slices. Nature 1984, 308:736-738.

65. Weiss JH, Hartley DM, Koh JY, Choi DW: AMPA receptor activation
potentiates zinc neurotoxicity. Neuron 1993, 10:43-49.

66. Koh JY, Choi DW: Zinc toxicity on cultured cortical neurons: involvement
of N-methyl-D-aspartate receptors. Neuroscience 1994, 60:1049-1057.

67. Dewar D, Underhill SM, Goldberg MP: Oligodendrocytes and ischemic
brain injury. J Cereb Blood Flow Metab 2003, 23:263-274.

68. Chong ZZ, Kang JQ, Maiese K: Essential cellular regulatory elements of
oxidative stress in early and late phases of apoptosis in the central
nervous system. Antioxid Redox Signal 2004, 6:277-287.

69. Dressler J, Hanisch U, Kuhlisch E, Geiger KD: Neuronal and glial apoptosis
in human traumatic brain injury. Int J Legal Med 2007, 121:365-375.

70. Rossi DJ, Brady JD, Mohr C: Astrocyte metabolism and signaling during
brain ischemia. Nat Neurosci 2007, 10:1377-1386.

71. Frederickson CJ, Hernandez MD, McGinty JF: Translocation of zinc may
contribute to seizure-induced death of neurons. Brain Res 1989,
480:317-321.

72. Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF: Loss of
zinc staining from hippocampal mossy fibers during kainic acid induced
seizures: a histofluorescence study. Brain Res 1988, 446:383-386.

73. Lee JY, Cole TB, Palmiter RD, Koh JY: Accumulation of zinc in
degenerating hippocampal neurons of ZnT3-null mice after seizures:
evidence against synaptic vesicle origin. J Neurosci 2000, 20:RC79.

74. Suh SW, Chen JW, Motamedi M, Bell B, Listiak K, Pons NF, Danscher G,
Frederickson CJ: Evidence that synaptically-released zinc contributes to
neuronal injury after traumatic brain injury. Brain Res 2000, 852:268-273.

75. Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH: Possible
role of zinc in the selective degeneration of dentate hilar neurons after
cerebral ischemia in the adult rat. Neurosci Lett 1990, 109:247-252.

76. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD: Elimination of
zinc from synaptic vesicles in the intact mouse brain by disruption of
the ZnT3 gene. Proc Natl Acad Sci USA 1999, 96:1716-1721.

77. Lee JY, Kim JH, Palmiter RD, Koh JY: Zinc released from metallothionein-iii
may contribute to hippocampal CA1 and thalamic neuronal death
following acute brain injury. Exp Neurol 2003, 184:337-347.

78. Lee JY, Hwang JJ, Park MH, Koh JY: Cytosolic labile zinc: a marker for
apoptosis in the developing rat brain. Eur J Neurosci 2006, 23:435-442.

79. Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH: Intracellular Zn2+
accumulation contributes to synaptic failure, mitochondrial
depolarization, and cell death in an acute slice oxygen-glucose
deprivation model of ischemia. J Neurosci 2009, 29:1105-1114.

80. Choi DW: Glutamate neurotoxicity in cortical cell culture is calcium
dependent. Neurosci Lett 1985, 58:293-297.

81. Pivovarova NB, Andrews SB: Calcium-dependent mitochondrial function
and dysfunction in neurons. FEBS J .

82. Stork CJ, Li YV: Intracellular zinc elevation measured with a “calcium-
specific” indicator during ischemia and reperfusion in rat hippocampus:
a question on calcium overload. J Neurosci 2006, 26:10430-10437.

83. Brand-Schieber E, Werner P: AMPA/kainate receptors in mouse spinal
cord cell-specific display of receptor subunits by oligodendrocytes and
astrocytes and at the nodes of Ranvier. Glia 2003, 42:12-24.

Lee and Koh Molecular Brain 2010, 3:30
http://www.molecularbrain.com/content/3/1/30

Page 7 of 9

http://www.ncbi.nlm.nih.gov/pubmed/20544854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20544854?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3053862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3053862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/939995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/939995?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15891778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15891778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6023853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6023853?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8638123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8638123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9530500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14987444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14987444?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16308478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16308478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9987035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9987035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766175?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20412391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20412391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11483663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12358795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12358795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12358795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12358795?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17728843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17728843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17728843?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10764727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10764727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10764727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11124986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11595748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12002684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15189117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7834016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7834016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12730443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12730443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6616240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6616240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9200720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9200720?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3000994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3000994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3000994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3000994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3000994?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10801962?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6717566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6717566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831465?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6717567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6717567?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7678965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7678965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7936205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7936205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12621301?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15025929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15025929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15025929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17106737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17106737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2713657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2713657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3370496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3370496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3370496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10807937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10807937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10807937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10678752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10678752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2330128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2330128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2330128?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9990090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9990090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9990090?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14637104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14637104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14637104?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16420450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16420450?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19176819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2413399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2413399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20659161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20659161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17035527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17035527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17035527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594733?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594733?dopt=Abstract


84. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M,
Matute C, Tonello F, Gundersen V, Volterra A: Glutamate exocytosis from
astrocytes controls synaptic strength. Nat Neurosci 2007, 10:331-339.

85. Matute C, Alberdi E, Domercq M, Sanchez-Gomez MV, Perez-Samartin A,
Rodriguez-Antiguedad A, Perez-Cerda F: Excitotoxic damage to white
matter. J Anat 2007, 210:693-702.

86. Kim TY, Yi JS, Chung SJ, Kim DK, Byun HR, Lee JY, Koh JY: Pyruvate
protects against kainate-induced epileptic brain damage in rats. Exp
Neurol 2007, 208:159-167.

87. Petty MA, Wettstein JG: Elements of cerebral microvascular ischaemia.
Brain Res Brain Res Rev 2001, 36:23-34.

88. Lee JY, Kim YH, Koh JY: Protection by pyruvate against transient forebrain
ischemia in rats. J Neurosci 2001, 21:RC171.

89. Lee JM, Zipfel GJ, Park KH, He YY, Hsu CY, Choi DW: Zinc translocation
accelerates infarction after mild transient focal ischemia. Neuroscience
2002, 115:871-878.

90. Love S: Oxidative stress in brain ischemia. Brain Pathol 1999, 9:119-131.
91. Lobner D, Canzoniero LM, Manzerra P, Gottron F, Ying H, Knudson M,

Tian M, Dugan LL, Kerchner GA, Sheline CT, et al: Zinc-induced neuronal
death in cortical neurons. Cell Mol Biol (Noisy-le-grand) 2000, 46:797-806.

92. Boya P, Kroemer G: Lysosomal membrane permeabilization in cell death.
Oncogene 2008, 27:6434-6451.

93. Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K:
Regulation of apoptosis-associated lysosomal membrane
permeabilization. Apoptosis 2010, 15:527-540.

94. Shacka JJ, Klocke BJ, Roth KA: Autophagy, bafilomycin and cell death: the
“a-B-cs” of plecomacrolide-induced neuroprotection. Autophagy 2006,
2:228-230.

95. Shacka JJ, Klocke BJ, Shibata M, Uchiyama Y, Datta G, Schmidt RE, Roth KA:
Bafilomycin A1 inhibits chloroquine-induced death of cerebellar granule
neurons. Mol Pharmacol 2006, 69:1125-1136.

96. Yamashima T, Kohda Y, Tsuchiya K, Ueno T, Yamashita J, Yoshioka T,
Kominami E: Inhibition of ischaemic hippocampal neuronal death in
primates with cathepsin B inhibitor CA-074: a novel strategy for
neuroprotection based on ‘calpain-cathepsin hypothesis’. Eur J Neurosci
1998, 10:1723-1733.

97. Gardner OS, Shiau CW, Chen CS, Graves LM: Peroxisome proliferator-
activated receptor gamma-independent activation of p38 MAPK by
thiazolidinediones involves calcium/calmodulin-dependent protein
kinase II and protein kinase R: correlation with endoplasmic reticulum
stress. J Biol Chem 2005, 280:10109-10118.

98. Hung JH, Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC,
Chang YS, Chen CC, et al: Endoplasmic reticulum stress stimulates the
expression of cyclooxygenase-2 through activation of NF-kappaB and
pp38 mitogen-activated protein kinase. J Biol Chem 2004,
279:46384-46392.

99. Inanami O, Ohta T, Ito S, Kuwabara M: Elevation of intracellular calcium
ions is essential for the H2O2-induced activation of SAPK/JNK but not
for that of p38 and ERK in Chinese hamster V79 cells. Antioxid Redox
Signal 1999, 1:501-508.

100. Welihinda AA, Tirasophon W, Kaufman RJ: The cellular response to protein
misfolding in the endoplasmic reticulum. Gene Expr 1999, 7:293-300.

101. Kim I, Xu W, Reed JC: Cell death and endoplasmic reticulum stress:
disease relevance and therapeutic opportunities. Nat Rev Drug Discov
2008, 7:1013-1030.

102. Galluzzi L, Morselli E, Vicencio JM, Kepp O, Joza N, Tajeddine N, Kroemer G:
Life, death and burial: multifaceted impact of autophagy. Biochem Soc
Trans 2008, 36:786-790.

103. Kim I, Rodriguez-Enriquez S, Lemasters JJ: Selective degradation of
mitochondria by mitophagy. Arch Biochem Biophys 2007, 462:245-253.

104. Klionsky DJ: The molecular machinery of autophagy: unanswered
questions. J Cell Sci 2005, 118:7-18.

105. Cuervo AM: Autophagy: in sickness and in health. Trends Cell Biol 2004,
14:70-77.

106. Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM: The
dynamics of autophagy visualized in live cells: from autophagosome
formation to fusion with endo/lysosomes. Autophagy 2005, 1:23-36.

107. Gimenez-Xavier P, Francisco R, Santidrian AF, Gil J, Ambrosio S: Effects of
dopamine on LC3-II activation as a marker of autophagy in a
neuroblastoma cell model. Neurotoxicology 2009, 30:658-665.

108. Brayer KJ, Kulshreshtha S, Segal DJ: The protein-binding potential of C2H2
zinc finger domains. Cell Biochem Biophys 2008, 51:9-19.

109. Cousins RJ, Liuzzi JP, Lichten LA: Mammalian zinc transport, trafficking,
and signals. J Biol Chem 2006, 281:24085-24089.

110. Krezel A, Hao Q, Maret W: The zinc/thiolate redox biochemistry of
metallothionein and the control of zinc ion fluctuations in cell signaling.
Arch Biochem Biophys 2007, 463:188-200.

111. Maret W: Zinc coordination environments in proteins as redox sensors
and signal transducers. Antioxid Redox Signal 2006, 8:1419-1441.

112. Maret W: Metallothionein redox biology in the cytoprotective and
cytotoxic functions of zinc. Exp Gerontol 2008, 43:363-369.

113. Pedersen MO, Larsen A, Stoltenberg M, Penkowa M: Cell death in the
injured brain: roles of metallothioneins. Prog Histochem Cytochem 2009,
44:1-27.

114. Chung RS, Fung SJ, Leung YK, Walker AK, McCormack GH, Chuah MI,
Vickers JC, West AK: Metallothionein expression by NG2 glial cells
following CNS injury. Cell Mol Life Sci 2007, 64:2716-2722.

115. Bremner I: Interactions between metallothionein and trace elements.
Prog Food Nutr Sci 1987, 11:1-37.

116. Sato M, Bremner I: Oxygen free radicals and metallothionein. Free Radic
Biol Med 1993, 14:325-337.

117. Ambjorn M, Asmussen JW, Lindstam M, Gotfryd K, Jacobsen C, Kiselyov VV,
Moestrup SK, Penkowa M, Bock E, Berezin V: Metallothionein and a
peptide modeled after metallothionein, EmtinB, induce neuronal
differentiation and survival through binding to receptors of the low-
density lipoprotein receptor family. J Neurochem 2008, 104:21-37.

118. Asmussen JW, Von Sperling ML, Penkowa M: Intraneuronal signaling
pathways of metallothionein. J Neurosci Res 2009, 87:2926-2936.

119. Haase H, Rink L: Signal transduction in monocytes: the role of zinc ions.
Biometals 2007, 20:579-585.

120. Leung YK, Pankhurst M, Dunlop SA, Ray S, Dittmann J, Eaton ED, Palumaa P,
Sillard R, Chuah MI, West AK, et al: Metallothionein induces a regenerative
reactive astrocyte phenotype via JAK/STAT and RhoA signalling
pathways. Exp Neurol 2010, 221:98-106.

121. Bell SG, Vallee BL: The metallothionein/thionein system: an
oxidoreductive metabolic zinc link. Chembiochem 2009, 10:55-62.

122. Ding ZC, Ni FY, Huang ZX: Neuronal growth-inhibitory factor
(metallothionein-3): structure-function relationships. FEBS J 2010,
277:2912-2920.

123. Faller P: Neuronal growth-inhibitory factor (metallothionein-3): reactivity
and structure of metal-thiolate clusters. FEBS J 2010, 277:2921-2930.

124. Nordberg M: Metallothioneins: historical review and state of knowledge.
Talanta 1998, 46:243-254.

125. Garrett SH, Sens MA, Shukla D, Nestor S, Somji S, Todd JH, Sens DA:
Metallothionein isoform 3 expression in the human prostate and cancer-
derived cell lines. Prostate 1999, 41:196-202.

126. Garrett SH, Sens MA, Todd JH, Somji S, Sens DA: Expression of MT-3
protein in the human kidney. Toxicol Lett 1999, 105:207-214.

127. Hoey JG, Garrett SH, Sens MA, Todd JH, Sens DA: Expression of MT-3
mRNA in human kidney, proximal tubule cell cultures, and renal cell
carcinoma. Toxicol Lett 1997, 92:149-160.

128. Moffatt P, Seguin C: Expression of the gene encoding metallothionein-3
in organs of the reproductive system. DNA Cell Biol 1998, 17:501-510.

129. Sewell AK, Jensen LT, Erickson JC, Palmiter RD, Winge DR: Bioactivity of
metallothionein-3 correlates with its novel beta domain sequence rather
than metal binding properties. Biochemistry 1995, 34:4740-4747.

130. Fitzgerald M, Nairn P, Bartlett CA, Chung RS, West AK, Beazley LD:
Metallothionein-IIA promotes neurite growth via the megalin receptor.
Exp Brain Res 2007, 183:171-180.

131. Asmussen JW, Ambjorn M, Bock E, Berezin V: Peptides modeled after the
alpha-domain of metallothionein induce neurite outgrowth and
promote survival of cerebellar granule neurons. Eur J Cell Biol 2009,
88:433-443.

132. Arai Y, Uchida Y, Takashima S: Developmental immunohistochemistry of
growth inhibitory factor in normal brains and brains of patients with
Down syndrome. Pediatr Neurol 1997, 17:134-138.

133. Isumi H, Uchida Y, Hayashi T, Furukawa S, Takashima S: Neuron death and
glial response in pontosubicular necrosis. The role of the growth
inhibition factor. Clin Neuropathol 2000, 19:77-84.

Lee and Koh Molecular Brain 2010, 3:30
http://www.molecularbrain.com/content/3/1/30

Page 8 of 9

http://www.ncbi.nlm.nih.gov/pubmed/17310248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17310248?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504270?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17905231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17905231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11516770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11588201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11588201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12435425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12435425?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9989455?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10875441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10875441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18955971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20077016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20077016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16391239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9751144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15649892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15649892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15649892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15649892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15649892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15319438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15319438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15319438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11233147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11233147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11233147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10440230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10440230?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19043451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18793137?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17475204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15615779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15615779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15102438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16874023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19410601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19410601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19410601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18286240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18286240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16793761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16793761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17391643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17391643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16987000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16987000?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18171607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18171607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19348909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19348909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17896077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17896077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3303133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8458590?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17986228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19405100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19405100?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17453150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19837066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19837066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19837066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19089881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19089881?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20561055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20561055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20561054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20561054?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18967148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10517878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10517878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10355541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10355541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9295238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9295238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9295238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9655243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9655243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7718580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7718580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7718580?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19446362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19446362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19446362?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9367293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10749288?dopt=Abstract


134. Kawashima T, Doh-ura K, Torisu M, Uchida Y, Furuta A, Iwaki T: Differential
expression of metallothioneins in human prion diseases. Dement Geriatr
Cogn Disord 2000, 11:251-262.

135. Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD: Disruption
of the metallothionein-III gene in mice: analysis of brain zinc, behavior,
and neuron vulnerability to metals, aging, and seizures. J Neurosci 1997,
17:1271-1281.

136. Carrasco J, Penkowa M, Giralt M, Camats J, Molinero A, Campbell IL,
Palmiter RD, Hidalgo J: Role of metallothionein-III following central
nervous system damage. Neurobiol Dis 2003, 13:22-36.

137. Puttaparthi K, Gitomer WL, Krishnan U, Son M, Rajendran B, Elliott JL:
Disease progression in a transgenic model of familial amyotrophic
lateral sclerosis is dependent on both neuronal and non-neuronal zinc
binding proteins. J Neurosci 2002, 22:8790-8796.

138. Ceballos D, Lago N, Verdu E, Penkowa M, Carrasco J, Navarro X,
Palmiter RD, Hidalgo J: Role of metallothioneins in peripheral nerve
function and regeneration. Cell Mol Life Sci 2003, 60:1209-1216.

139. Yogalingam G, Pendergast AM: Abl kinases regulate autophagy by
promoting the trafficking and function of lysosomal components. J Biol
Chem 2008, 283:35941-35953.

doi:10.1186/1756-6606-3-30
Cite this article as: Lee and Koh: Roles of zinc and metallothionein-3 in
oxidative stress-induced lysosomal dysfunction, cell death, and
autophagy in neurons and astrocytes. Molecular Brain 2010 3:30.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Lee and Koh Molecular Brain 2010, 3:30
http://www.molecularbrain.com/content/3/1/30

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/10940676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10940676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9006971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9006971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9006971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12758064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12758064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12388585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12388585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12388585?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12861386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12861386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18945674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18945674?dopt=Abstract

	Abstract
	Introduction
	Increases in Zinc under Oxidative Stress Conditions: Role in Neuronal and Glial Cell Death
	Lysosomal Membrane Permeabilization and Zinc
	Autophagy and Zinc
	MT3: the Source for Zinc in Neurons and Astrocytes
	Regulation of Lysosomal Functions by MT3

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

