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Abstract

Over-activation of AMPARs (α−amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors) is
implicated in excitotoxic neuronal death associated with acute brain insults, such as ischemic stroke. However, the
specific molecular mechanism by which AMPARs, especially the calcium-impermeable AMPARs, induce neuronal
death remains poorly understood. Here we report the identification of a previously unrecognized molecular
pathway involving a direct protein-protein interaction that underlies GluR2-containing AMPAR-mediated
excitotoxicity. Agonist stimulation of AMPARs promotes GluR2/GAPDH (glyceraldehyde-3-phosphate
dehydrogenase) complex formation and subsequent internalization. Disruption of GluR2/GAPDH interaction by
administration of an interfering peptide prevents AMPAR-mediated excitotoxicity and protects against damage
induced by oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia.
Introduction
Glutamate is the principal excitatory neurotransmitter in
the brain and is involved in numerous physiological
functions including neuronal circuit development, learn-
ing and memory [1]. Glutamate-induced neurotoxicity is
implicated in neuropathological disorders such as stroke
and epilepsy [2]. The effects of glutamate are mediated
via two major subfamilies of ligand-gated ion channels:
NMDAR (N-methyl-D-aspartate receptor) and AMPAR
[3]. AMPAR mediates fast synaptic transmission at
excitatory synapses, while NMDAR is critical in producing
a number of different forms of synaptic plasticity [1]. In
neurons, mature AMPA receptors are found as tetramers
consisting of various combinations of GluR1 to GluR4
subunits [4], each of which has the same topology: three
transmembrane domains and one membrain re-entrant
loop. All subunits are permeable to both Na+ and Ca2+ ions
with the exception of GluR2, which is uniquely
impermeable to Ca2+. The majority of AMPA receptors
in vivo contain GluR2 subunits whose ion selectivity is
dominant over other subunits [5].
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The accumulation of glutamate, which occurs immedi-
ately after ischemia, results in excessive stimulation of
glutamate receptors and leads to neurotoxicity [6,7].
NMDAR-mediated neurotoxicity is dependent upon
extracellular Ca2+ and is likely mediated by Ca2+ influx
directly through receptor-gated ion channels [6,7].
AMPAR is also tightly associated with a selective pattern
of neuronal loss in certain brain areas following both
global and focal ischemia [8-20]. Similar to what is
reported for NMDAR, excitotoxicity mediated by
AMPAR lacking the GluR2 subunit is thought to be
dependent on ion influx (Ca2+, Zn2+) through AMPAR
channels following agonist stimulation [19-21]. However,
as most native AMPARs in the hippocampus contain the
GluR2 subunit and therefore are likely impermeable to
Ca2+ [22-26], it is still unclear how activation of the
GluR2-containing AMPAR leads to neuronal cell death.
Protein-protein interactions with the AMPAR have

been reported to affect function of AMPAR, among
which the best characterized ones, such as GRIP (glutamate
receptor interacting protein), ABP (AMPAR-binding
protein), SAP97 (synapse-associated protein-97), PICK1
(protein interacting with C kinase-1), stargazin, NSF
(N-ethylmaleimide-sensitive factor) and AP2 (adaptor
protein-2) [27-34], bind to the intracellular carboxyl
terminus of AMPAR. They regulate AMPAR function
in a variety of ways, including modulation of AMPAR
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subcellular localization, clustering and/or trafficking.
Recent studies have demonstrated that NARP (neuronal
activity-regulated pentraxin) and N-cadherin interact with
the amino terminus (NT) of AMPAR subunits and play an
important role in AMPAR clustering [35] as well as
dendritic spine formation [36]. In the present study, we
have identified a new AMPAR-interacting partner, GAPDH.
We show that secreted GAPDH binds specifically to the
extracellular NT domain of the GluR2 subunit, a process
which is promoted by AMPAR activation. Disruption of
GluR2/GAPDH interaction prevents AMPAR-mediated
excitotoxicity and protects against damage in OGD model.

Results
GluR2 subunit directly interacts with GAPDH via its
Y142-K172 region of N-terminus
To identify potential proteins that may interact with the
NT domain of AMPAR subunits, we used GST-fusion
proteins GST-GluR1NT (A19-E538) and GST-GluR2NT

(V22-E545) to affinity “pull-down” proteins from solubilized
rat hippocampal tissues along with GST alone as a control.
The precipitated proteins were then identified by
Coomassie brilliant blue staining following SDS-PAGE.
A prominent protein band of ~37 kD was specifically
precipitated by GST-GluR2NT, but not by GST alone
or GST-GluR1NT (Figure 1A). Mass spectrometry
analysis (LC-MS/MS, Protana [now Transition Thera-
peutics]) of this protein band identified three fragments
that were homologous to and covered 17% of the
sequences within rat GAPDH (VIISAPSADAPMFVM
GVNHEK; VIHDNFGIVEGLMTTVHAITATQK; VPTP
NVSVVDLTCR). These results suggested that the
GluR2 subunit might form a protein complex with
GAPDH through its NT domain. We then confirmed
the GluR2/GAPDH interaction with affinity purification
experiments using GST-GluR2NT, GST-GluR2CT (I833-
I883) and GST alone. Subsequent Western blot analysis
using a GAPDH antibody confirmed the association
between GAPDH and GluR2NT, but not GluR2CT
(Figure 1B).
Before conducting further experiments, we examined

whether GluR2/GAPDH complex exists in vivo. As
shown in Figure 1C, the GluR2 antibody was able to co-
immunoprecipitate (Co-IP) GAPDH from solubilized
proteins extracted from rat hippocampal tissues confirm-
ing the in vivo association between GluR2 and GAPDH. In
order to smooth the way for the following functional
studies, three GluR2NT GST-fusion proteins (GluR2NT1:
V22-S271, GluR2NT2: K272-I421, GluR2NT3: L422-E545) were
constructed (Figure 1D) and utilized in affinity purification
experiments to delineate the region (s) of GluR2NT

involved in the interaction with GAPDH. As shown in
Figure 1E, GST-GluR2NT1, but not GST-GluR2NT2,
GST-GluR2NT3 or GST alone, precipitated GAPDH
indicating that the GluR2 subunit interacts with GAPDH
through its NT region V22-S271. A series of truncations of
the GluR2NT1 region were then created to map the site
that interacts with GAPDH (Figure 1D). As shown in
Figure 1F and 1G, GST-GluR2NT1-3 (H122-K172) and
GST-GluR2NT1-3–2 (Y142-K172) were able to precipitate
GAPDH from rat hippocampal tissues.
While these results suggested the existence of the

GluR2/GAPDH complex, it did not clarify whether this
GluR2/GAPDH complex was formed through either a
direct interaction or was mediated indirectly by other
accessory binding proteins. Therefore we performed
in vitro binding assays to examine whether GAPDH and
the GluR2 subunit directly interact with each other. As
shown in Figure 1H, in vitro translated [35 S]-GAPDH
probe bound with GST-GluR2NT1 but not with GST-
GluR2NT2, GST-GluR2NT3 or GST alone, indicating the
specificity of the direct protein-protein interaction
between GAPDH and GluR2NT1. Consistent with the
results from affinity purification experiments, the in vitro
translated [35 S]-GAPDH probe only hybridized with
GST-GluR2NT1-3 and GST-GluR2NT1-3–2, (Figure 1I, J).
Together, these data provided in vitro evidence that
GAPDH forms a direct protein-protein interaction with
the GluR2 subunit through the Y142-K172 region of the
GluR2NT.

Agonist-facilitated GluR2/GAPDH complex formation
occurs extracellularly
As the NT region of GluR2 locates extracellularly, we
then investigated whether the GluR2/GAPDH
interaction occurs extracellularly by performing cell
surface biotinylation experiments in primary culture of
rat hippocampus, in which cell surface proteins of neurons
were labeled with sulfo-NHS-LC-biotin. As shown in
Figure 2A, the GluR2 antibody precipitated GAPDH from
the biotinylated (B, cell surface) fraction, but failed to pull
down GAPDH from the non-biotinylated (NB, intracellular)
fraction, suggesting that the GluR2/GAPDH complex
formation occurs extracellularly. Consistent with our
findings, a previous study demonstrated that GAPDH was
constitutively secreted into the extracellular space in
several mammalian cell lines including HEK-293 T cells
and neuro-2a cells [37]. We therefore speculated that
GAPDH might be secreted into the extracellular space
and form a protein complex with GluR2NT. To test our
hypothesis, we first confirmed GAPDH secretion in our
cell lines by immunoprecipitating GAPDH from the
conditioned medium (incubation with neurons/cells for
24 hours) of hippocampal primary cultures with a
primary antibody against GAPDH. As shown in
Figure 2B, GAPDH was immunoprecipitated from
conditioned medium, but not from fresh medium. To
further exclude the possibility that the observed
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Figure 1 Identification and characterization of GluR2/GAPDH interaction. A, Coomassie blue stained SDS-PAGE gel of the protein(s)
selectively affinity pulled down by GST-GluR2NT, GluR1NT and GST alone from solubilized rat hippocampal lysates. Protein of interest: ~37 kDa.
B, Western blot analysis of rat hippocampal proteins affinity purified by GST-GluR2NT, GST-GluR2CT and GST from solubilized rat hippocampal
lysates and immunoblotted with primary antibody against GAPDH. C, Co-immunoprecipitation of GAPDH by the GluR2 primary antibody from
solubilized rat hippocampus. D, Schematic representation of GST-fusion proteins encoding truncated GluR2NT segments. E-G, Western blot analysis
of rat hippocampal proteins affinity purified by (E) GST-GluR2NT1, GST-GluR2NT2 GST-GluR2NT3 and GST; (F) GST-GluR2NT1-1, GST-GluR2NT1-2, GST-GluR2NT1-
3, GST-GluR2NT1-4, GST-GluR2NT1-5 and GST; (G) GST-GluR2NT1-3–1, GST-GluR2NT1-3–2 and GST from solubilized rat hippocampal lysates and
immunoblotted with primary antibody against GAPDH. H-J: Using an in vitro binding assay, [35 S]-GAPDH probe bound with GST-GluR2NT1 (H), GST-
GluR2NT1-3 (I) and GST-GluR2NT1-3–2 (J), but not with other GST fusion proteins or GST alone.

Wang et al. Molecular Brain 2012, 5:13 Page 3 of 12
http://www.molecularbrain.com/content/5/1/13
GAPDH in the conditioned medium resulted from cell
lysis, conditioned media from non-transfected HEK-
293 T cells and from cells expressing GluR1/2 subunits
were collected, concentrated and examined by Western
blot analyses using anti-GAPDH and anti-α-tubulin
antibodies. As shown in Figure 2C, regardless of
GluR1/2 subunit expression, GAPDH was detected
from both conditioned media and cell lysates, whereas
α-tubulin (a cytoplasmic protein marker) was only
detected from cell lysates, indicating that the GAPDH
found in the conditioned medium is secreted from cells
and is not a contaminant due to cell lysis.
Furthermore, we examined the effect of the AMPAR

activation on the formation of GluR2/GAPDH complex.
By conducting Co-IP experiments, we found that
AMPAR activation with either 100 μM glutamate in
HEK-293 T cells expressing GluR1/2 subunits or 100 μM
kainic acid (KA) in hippocampal neurons facilitated the
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Figure 2 GluR2/GAPDH interaction occurs extracellularly. A, Rat hippocampal neurons were incubated with sulfo-NHS-LC biotin to label cell
surface proteins. GAPDH that co-immunoprecipitated with GluR2 antibody was examined in both non-biotinylated (NB) and biotinylated (B)
proteins. B, Using a rabbit anti-GAPDH antibody, GAPDH was immunoprecipitated from the conditioned medium (CM; medium incubated with
neurons/cells for 24 hours) of primary cultures of rat hippocampus but not from fresh medium. A mouse GAPDH antibody was used for Western
blotting and rabbit IgG was used as negative control. C, Western blot analysis of GAPDH and α-tubulin in concentrated conditioned medium of
non-transfected HEK-293 T cells (non-T) and HEK-293 T cells transfected with GluR1/2 subunits (AMPAR), in the presence or absence of glutamate
(AMPAR+Glut). Cell lysates were used as controls. D-E: Coimmunoprecipitation of GAPDH by primary antibody against GluR2 subunit (with or
without glutamate treatment) from HEK-293 T cells expressing GluR1/2 subunits (D) and hippocampal neurons (E) pre-treated with GluR2NT1-3–2 or
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experiments.
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GluR2/GAPDH complex formation by 75 ± 18% and
58 ± 11% (mean ± SEM, n = 3), respectively (Figure 2D, E;
top panels). In each Co-IP experiment, 500 μg of protein
were incubated in the presence of primary antibodies
anti-GluR2 or rabbit IgG, and 50 μg of extracted protein
was used as positive control. The level of directly immu-
noprecipitated GluR2 subunit was not significantly
altered by the agonist stimulation (Figure 2D, E; bottom
panels). If the GluR2NT1-3–2 region is essential for GluR2
to interact with GAPDH, application of the peptide en-
coding GluR2NT1-3–2 would disrupt the GluR2/GAPDH
interaction by competing with GluR2 for GAPDH. As
expected, pre-incubation of the GluR2NT1-3–2 peptide
(10 μM, 1 hour), but not the scrambled GluR2NT1-3–2

peptide (GluR2NT1-3-2Scram), significantly inhibited the
agonist-induced increase of the GluR2/GAPDH complex
formation in transfected HEK-293 T cells (Figure 2D,
65 ± 8% decrease; mean ± SE, n = 3) and in hippocampal
neurons (Figure 2E, 46 ± 6% decrease; mean ± SE, n = 3).
The fact that extracellular application of the interfering
GluR2NT1-3–2 peptide was able to disrupt the GluR2/
GAPDH interaction further supports the notion that the
GluR2/GAPDH complex formation occurs extracellularly.

Disruption of GluR2/GAPDH interaction inhibits
AMPAR-mediated excitotoxicity
Both AMPAR and GAPDH have been independently shown
to be involved in cell toxicity [38-42]. The observation that
AMPAR activation promoted GluR2/GAPDH complex for-
mation suggested that the GluR2/GAPDH interaction
might be involved in AMPAR-mediated excitotoxicity. Be-
fore conducting further experiments, we first confirmed the



Wang et al. Molecular Brain 2012, 5:13 Page 5 of 12
http://www.molecularbrain.com/content/5/1/13
ability of glutamate (300 μM, 24 hour; plus 25 μM
cyclothiazide to prevent AMPAR desensitization) to induce
cell death in HEK-293 T cells expressing GluR1/2 (Fig-
ure 3A), which is consistent with previous studies
[43,44]. To investigate the role of the GluR2/GAPDH
interaction in AMPAR-mediated cell death, HEK-293 T
cells expressing GluR1/2 were pre-treated with the
GluR2NT1-3–2 peptide (10 μM, 1 hour), which is able to
disrupt the GluR2/GAPDH association (confirmed in
Figure 2D). As shown in Figure 3B, pre-incubation
with the GluR2NT1-3–2 peptide significantly attenuated
glutamate-induced (300 μM, 500 μM) cell death. The
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Figure 3 Regulation of the AMPAR-mediated cell death in transfected
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peptide was also confirmed in HEK-293 T cells
expressing GluR1/3, GluR1/4 or GluR3/4 subunits,
where pre-incubation with the GluR2NT1-3–2 peptide
failed to inhibit AMPAR-mediated cell death
(Figure 3D).
To study the GluR2/GAPDH interaction in a relevant

cellular milieu, rat hippocampal neurons were utilized in
parallel experiments. We previously confirmed in Figure 2E
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that pre-incubating hippocampal neurons with the
GluR2NT1-3–2 peptide interrupted the GluR2/GAPDH
interaction promoted by the AMPAR activation. Thus, we
examined whether the disruption of this interaction in
hippocampal neurons by applying the GluR2NT1-3–2

peptide would rescue neurons from AMPAR-mediated
excitotoxicity. AMPAR-mediated cell death was induced
by treating neurons with KA (100 μM, 1 hour) in the
presence of NMDAR and Ca2+ channel antagonists
(10 μM MK-801 and 2 μM nimodipine). As shown in
Figure 4A, pretreatment with the GluR2NT1-3–2 peptide
significantly inhibited AMPAR-mediated cell death.
AMPAR-mediated toxicity is often considered a

contributing, if not an underlying, causative factor in
ischemia, which deprives brain cells of glucose and
oxygen, causing irreversible brain damage within
minutes. Cells in ischemic brain tissue undergo a
number of changes: they rapidly lose their energy
supplies, their membranes become depolarized, calcium
loads are increased, reactive oxygen types are produced
and excitotoxic effects are found. These biochemical
changes are followed by irreversible changes to cellular
structures and cell death. The oxygen glucose
deprivation (OGD) cell lesion model represents a valid
simulation of the conditions in brain ischemia [45,46].
Therefore, we assessed the effectiveness of the
GluR2NT1-3–2 peptide to rescue cells from neurotoxic
stress in the OGD model to verify the implication of the
GluR2/GAPDH interaction in ischemia. As shown in
Figure 4B, the GluR2NT1-3–2 peptide pretreatment
(10 μM, 1 hour) was able to significantly attenuate
OGD-induced cell death (30.4% ± 9.5%) in the presence
of 10 μM MK-801 and 2 μM nimodipine.
In order to further confirm the role of GAPDH in the

AMPAR-mediated cell death, GAPDH siRNA was
transfected into HEK-293 T cells to block the expression
of GAPDH, but not the expression of GluR2 (Figure 4C).
As shown in Figure 4D-E, AMPAR-mediated cell death
was significantly attenuated in the presence of GAPDH
siRNA. Together, these data suggest that the GluR2/
GAPDH interaction may play a critical role in the
GluR2-contaning AMPAR-mediated cell death.

Activation of AMPAR induces AMPAR/GAPDH complex
internalization through the GluR2/GAPDH interaction
Previous studies demonstrated that agonist stimulation
could induce AMPAR endocytosis [47-49]. Thus, we
examined whether the extracellular GAPDH would
internalize along with AMPAR through the GluR2/GAPDH
interaction upon the activation of AMPAR. To quantify
GluR2 and GAPDH cell surface levels in HEK-293 T cells
expressing GluR1/2, a cell-based ELISA assay was applied
as previously described [49,50]. We first confirmed the
results from previous studies that the glutamate stimulation
(100 μM, 30 minutes) induced a significant decrease in
plasma membrane GluR2 (Figure 5A). We then tested
whether the cell surface-associated GAPDH is also
decreased upon agonist stimulation of AMPAR. As
shown in Figure 5B, activation of AMPAR signifi-
cantly decreased the cell surface-associated GAPDH
in HEK-293 T cells expressing GluR1/2, a phenomena
that can be abolished by the pre-treatment of
GluR2NT1-3–2 peptide. These data, together with the
inability of glutamate stimulation to internalize the
cell surface-associated GAPDH in the non-transfected
HEK-293 T cells (Figure 5C) or HEK-293 T cells
transfected with GluR1/3 subunits (Figure 5D),
suggest that GAPDH internalization may be a passive
process enabled by the GluR2/GAPDH interaction.
To further investigate whether the observed GAPDH

internalization is dependent on the GluR2 internalization,
we tested whether blockade of GluR2 endocytosis will
inhibit GAPDH internalization. Previous studies demon-
strated that GluR2 endocytosis is dynamin-dependent and
that the expression of the dominant-negative dynamin
mutant (K44E) was able to block the GluR2 internalization
[47,49]. Thus, after confirming the ability of the K44E
mutant to block the GluR2 internalization (Figure 5E), we
examined whether the K44E mutant affected cell surface-
associated GAPDH internalization in HEK-293 T cells
expressing GluR1/2 subunits. As shown in Figure 5F, the
K44E mutant significantly inhibited glutamate-induced cell
surface-associated GAPDH internalization, indicating that
GAPDH internalized through a dynamin-dependent
pathway and further confirmed that GAPDH was co-
internalize with the GluR2 subunit. Moreover, the K44E
mutant also attenuated glutamate-induced cell death in
HEK-293 T cells expressing GluR1/2 subunits (Figure 5G),
indicating that GluR2/GAPDH complex internalization
may play an important role in the GluR2-containing
AMPAR-mediated cell death.

Discussion
AMPAR-mediated excitotoxicity has been implicated in
the pathogenesis of neuronal loss associated with a
number of brain disorders, including transient forebrain
ischemia [8-20]. However, the underlying mechanisms
remain unclear. An uncontrollable rise in intracellular Ca2+

and Zn2+, with subsequent activation of diverse downstream
cell death signals has been one of the most prominent
hypotheses to explain excitotoxic neuronal death
[19,20,51-55]. Although GluR2-containing AMPARs are
calcium impermeable, recent studies have suggested
that selective reductions in the expression of GluR2,
resulting in an increase in Ca2+−permeable AMPA recep-
tors, have been associated with an increased vulnerability of
neurons to ischemic injury [16,56-61]. Although the
mechanisms involved are not fully understood, it has been
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suggested that GluR2 internalization may enhance the Ca2+-
influx that results in neurotoxicity, either through newly
synthesized Ca2+-permeable AMPARs [57] or by activation
of a caspase-dependent apoptotic pathway [62]. Consistent
with previous studies, our data has shown that agonist
stimulation of AMPAR results in the internalization of
GluR2 and promotes extracellular GAPDH internalization
via a GluR2/GAPDH coupling-dependent process. This is
the first evidence showing that the N-terminal of the
GluR2 subunit plays an important role in AMPA receptor-
mediated excitotoxicity through regulating AMPAR
trafficking. Many studies have shown that agonist-
induced GluR2 internalization is a dynamin-dependent
process [47,49]. The observations of our study that mutant
dynamin abolishes both GluR2 and GAPDH internalization
and the inability of GAPDH to internalize in cells lacking
GluR2 suggest that GAPDH internalization is a passive
process facilitated by the GluR2/GAPDH interaction and
mediated by GluR2 internalization.
Given the fact that GAPDH interacts with the extracellu-

lar NT of GluR2, it is likely that the GluR2/GAPDH protein
complex may be in an endocytosed vesicle following the
agonist-induced internalization. On this basis it would be
logical to further ask how the GluR2/GAPDH complex gets
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Figure 5 Activation of AMPAR induces GluR2/GAPDH co-internalization. A, Quantification of GluR2 expression at the plasma membrane
with/without glutamate treatment (100 μM, 30 minutes) in HEK-293 T cells expressing GluR1/2 subunits. *Significantly different from control group
(P< 0.05, n = 9 per group), t-test. B, Quantification of cell surface-associated GAPDH with/without glutamate treatment in the presence/absence of
the GluR2NT1-3–2 peptide in HEK-293 T cells expressing GluR1/2 subunits. *Significantly different from control group; #, significantly different from
glutamate group (P< 0.05, n = 9 per group), ANOVA followed by post-hoc SNK test. C, Quantification of cell surface-associated GAPDH in
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control WT group (P< 0.001, n = 9 per group); ##significantly different from control K44E group (P< 0.01, n = 9 per group), t-test. All assays in
this figure were performed 3 times independently.
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out of the vesicle and promotes excitotoxic neuronal death.
There are many possibilities for this question. First, the
complex may be transported to the nucleus via a retrograde
vesicle transport mechanism leading to the fusion of the
vesicle with ER or nuclear membranes or via mechanisms
recently proposed for the nuclear translocation of another
plasma membrane receptor, the EGF receptor [63,64].
Second, the GluR2/GAPDH complex formation in the
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vesicle may lead to the activation of lysosome in the
vesicle that breaks the vesicle and release the GluR2/
GAPDH into the cytoplasm.
The possible mechanisms that underlie this GluR2/

GAPDH related cell death is particularly interesting. It is
somewhat surprising to find that the AMPAR-mediated
cell death involves GAPDH, a key enzyme involved in
glycolysis with a ubiquitous intracellular distribution.
However, additional roles for GAPDH have been
discovered recently, including membrane fusion/transport,
binding to low molecular weight G proteins, regulation of
the cytoskeleton, accumulation of glutamate into
presynaptic vesicles, and apoptosis [65-71]. Recent studies
have shown that GAPDH binds to Siah1 and triggers
apoptosis [39]. Moreover GAPDH has also been reported
to interact with p53 [72], a tumor suppressor and
transcription factor that has been implicated in glutamate-
mediated excitotoxicity [73-75]. Numerous evidence show
that activation of p53 can trigger apoptosis (for reviews,
see [76]) under conditions of cellular stress mediated by
phosphorylation or acetylation of p53 [77]. Whether Siah1,
p53 or other molecules are involved in GluR2/GAPDH-
related cell death pathway requires much more additional
work for a better understanding of the detailed molecular
mechanisms.
Stroke is the second leading cause of death worldwide

yet there are very few effective pharmacological
treatments for patients suffering ischemic stroke.
Thrombolytics such as alteplase and tenecteplase have
been a significant advance in the treatment of ischemic
stroke. However, thrombolytics must be given soon after
a stroke to be effective (within 3 hours of ischemic
episode). This short time frame has limited their use in
many situations. There continues to be a significant
unmet need for acute pharmacological treatments
beyond thrombolytics. Advances in recent years include
hypothermia [78-80], oxygen therapy [81], stem cell
transplantation [82] and cerebral plasticity stimulation
(trophic factor) strategies [83]. These novel techniques
are intriguing, but will require further well-designed
prospective trials to assess clinical feasibility, safety, and
efficacy [84]. Another approach that has received consider-
able attention is agents that inhibit ischemia-induced
excitotoxicity though directly blocking glutamate receptors.
However, all have failed at various stages of development
for a variety of reasons. One of the main drawbacks of the
glutamate receptor antagonists is that they block normal
excitatory neurotransmission necessary for maintaining
basic brain functions. For this reason, much research has
been directed at identifying drugs and peptides that may be
able to selectively target protein-protein interactions that
have more narrow function than a certain neurotransmitter
receptor. In the present study, we have shown that adminis-
tration of the interfering GluR2NT1-3–2 peptide to interrupt
the GluR2/GAPDH interaction significantly mitigates
neuronal cell death in a cell model of ischemia, revealing a
previously unappreciated signaling pathway underlying
AMPAR-mediated excitotoxicity and it may provide a new
avenue for the development of a complementary
therapeutics in the treatment of neuropathological
disorders, such as stroke and epilepsy.
Materials and methods
Cell culture and transient transfection
HEK293 T cells were cultured in α-MEM (Invitrogen,
Carlsbad, CA) supplemented with 10% fetal bovine serum
(Invitrogen) and maintained in incubators at 37°C, 5%
CO2. HEK293T cells were transiently transfected with
plasmid constructs and/or siRNA using lipofectamine
2000 reagents (Invitrogen). Cells were harvested 48 hours
post transfection.
Primary hippocampal neuron culture and OGD treatment
Primary cultures from hippocampus were prepared from
fetal Wistar rats (embryonic day 17–19) on Cell + (Sarstedt)
culture dishes as previously described [85-87]. The cultures
were used for experiments on 12–15 days after plating.
Hippocampal cultures were pretreated GluR2NT1-3–2

peptides prior to kainic acid treatment. OGD treatment was
performed in the presence of MK-801 and nimodipine as
previously described [57].
GST fusion proteins
To construct GST-fusion proteins encoding truncated
GluR2 and GAPDH, cDNA fragments were amplified by
using PCR method with specific primers. Except where
specified, all 5′ and 3′ oligonucleotides incorporated
BamH1 site (GGATCC) and Xho1 sites (CTCGAG),
respectively, to facilitate subcloning into vector pGEX-4T3
(for GST-fusion protein construction). GST-fusion proteins
were prepared from bacterial lysates with Glutathione
Sepharose 4B beads as described by the manufacturer
(Amersham). To confirm appropriate splice fusion and the
absence of spurious PCR generated nucleotide errors, all
constructs were resequenced.
Protein affinity purification, in vitro binding,
co-immunoprecipitation and western blot
Protein affinity purification, in vitro binding, co-immuno-
precipitation and Western blot analyses were performed as
previously described [85-87]. Antibodies used for immuno-
precipitation, Western blots and cell surface ELISA assays
include GAPDH (polyclonal from Abcam, monoclonal
from Chemicon), GluR2 (Western blots: Chemicon;
immunoprecipitation: Upstate), and α-tubulin (monoclonal,
Sigma-Aldrich).
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Cell-ELISA assays
HEK-293 T cells transfected with plasmid constructs were
treated with 100 μM glutamate or extracellular solution
(ECS) before fixing in 4% (W/V) paraformaldehyde for 10
minutes in the absence (non-permeabilized conditions) or
presence (permeabilized conditions) of 1% (V/V) Triton
X-100. Cells were incubated in 1% (W/V) glycine for 10
minutes at 4°C to recover from the fixing. Cells were
then incubated with specific primary antibodies for the
purpose of labeling the receptors or proteins on the cell
surface under non-permeabilized conditions or the
entire receptor pool under permeabilized conditions.
After incubation with corresponding HRP-conjugated
secondary antibodies (Sigma-Aldrich), the HRP substrate
o-phenylenediamine (Sigma-Aldrich) was added to pro-
duce a color reaction that was stopped with the equal vol-
ume of 3 N HCl. Fluorescence intensity in each well was
measured with a plate reader (Victor3; PerkinElmer). The
cell surface expression of HA-GluR2 after pre-treatment
with glutamate was presented as the ratio of colorimetric
readings under non-permeabilized conditions to those
under permeabilized conditions, and then normalized to
their respective control groups (pretreated with ECS).
Afterwards, cells were scrapped from the dishes, and the
protein concentration of each dish was measured. The
results of cell surface expression of receptors or proteins
were calibrated by the protein concentration of each well.
Analysis was done using at least 9 separate wells in each
group. Cell ELISA using primary hippocampal neurons
was performed identically with assays using HEK-293 T
cells, with the exception that the anti-GluR2 antibody
(MAB397; Chemicon) was used as primary antibody in-
stead of anti-HA.

Quantification of AMPAR-mediated excitotoxicity
HEK-293 T cells transfected with GluR1/2 subunits were
exposed to 300 μM glutamate/25 μM cyclothiazide at 37°C
for 24 hour. Cells were allowed to recover for 24 hours at
37°C. To quantify AMPAR-mediated cell death, culture
medium was replaced by extracellular solution containing
50 μg/ml of propidium iodide (PI) (Invitrogen, Carlsbad,
CA). After 30 minutes incubation at 37°C, fluorescence
intensity in each well was measured with a plate reader
(Victor3; PerkinElmer, Waltham, MA). The fraction of
dead cells was normalized to the total cell number.
Primary hippocampal neurons were exposed to 100 μM
KA/25 μM cyclothiazide in the presence of NMDAR and
Ca2+ channel antagonists (10 μM MK-801 and 2 μM
nimodipine, respectively) at 37°C for 1 hour.

Cell biotinylation
For cell surface biotinylation, cells were rinsed four times
with ice-cold PBS2+ (PBS containing 0.1 mM CaCl2 and
1.0 mM MgCl2) after treatment, and incubated twice
with 1.0 mg/ml sulfo-NHS-LC-biotin (Pierce, Rockford,
IL) for 20 minutes at 4°C. Non-reactive biotin was
quenched by 20 minutes incubation at 4°C in ice-cold
PBS2+ and 0.1 M glycine. Cells were solubilized in RIPA
buffer (10 mM Tris, ph7.4, 150 mM NaCl, 1.0 mM
EDTA, 0.1% (W/V) SDS, 1.0% (V/V) Triton X-100 and
1.0% (V/V) Sodium deoxycholate) containing protease
inhibitors (1.0 mM PMSF and 1.0 μg/ml protease
cocktail). Biotinylated and non-biotinylated proteins were
separated from equal amounts of cellular protein by
incubation with 50 μl of 50% slurry of immobilized
streptavidin-conjugated beads (Pierce, Rockford, IL)
overnight with constant mixing at 4°C. Unbound
proteins (supernatant) were saved for later co-immuno-
precipitation experiment. Proteins bound to streptavidin
beads were eluted in biotin elution buffer. Biotinylated
and non-biotinylated samples were applied to protein A/G
PLUS-agarose (Santa Cruz Biotechnology, Santa Cruz, CA)
for co-immunoprecipitation.
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