
Radiske et al. Molecular Brain          (2021) 14:167  
https://doi.org/10.1186/s13041-021-00877-5

MICRO REPORT

Avoidance memory requires CaMKII activity 
to persist after recall
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Abstract 

Avoidance memory is destabilized when recalled concurrently with conflicting information, and must undergo a 
hippocampus-dependent restabilization process called reconsolidation to persist. CaMKII is a serine/threonine protein 
kinase essential for memory processing; however, its possible involvement in avoidance memory reconsolidation has 
not yet been studied. Using pharmacological, electrophysiological and optogenetic tools, we found that in adult male 
Wistar rats hippocampal CaMKII is necessary to reconsolidate avoidance memory, but not to keep it stored while inac-
tive, and that blocking reconsolidation via CaMKII inhibition erases learned avoidance responses.
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Recent learned experiences are converted into long-term 
memories through a protein synthesis-dependent stabili-
zation process known as consolidation that occurs only 
once for each memory item [1]. However, long-term 
memories can be destabilized when recalled and must be 
reconsolidated to persist [2]. Consolidation and recon-
solidation share some neurochemical properties, but are 
independent processes that can be dissociated at differ-
ent levels [3]. Avoidance is a normal defensive behavior 
maintained by fear of punishment. Step-down inhibitory 
avoidance (SDIA) is a one-trial, hippocampus-dependent 
learning task suitable for studying fear-motivated avoid-
ance memory in rats [4–6]. As a result of SDIA learning, 
animals suppress their innate preference for stepping 
down from a raised platform to avoid a footshock (For 
details see Additional file  1). SDIA-memory consolida-
tion requires activation of hippocampal Ca2 + /calmod-
ulin-dependent protein kinase II (CaMKII) [7], a major 
Ca2 + signaling effector highly enriched at the postsyn-
aptic side of glutamatergic synapses where it regulates 

AMPAR targeting [8, 9], one of the putative mechanisms 
controlling bidirectional synaptic plasticity during recon-
solidation [10]. However, the possible involvement of 
hippocampal CaMKII in avoidance memory reconsolida-
tion has not yet been studied. To do this, we implanted 
3-month-old male Wistar rats (300–350  g; Additional 
file 1) with infusion cannulas in dorsal CA1 and handled 
(HAN group) or pre-exposed them to the SDIA train-
ing box and left to freely explore it for 5-min once a day 
for 5 consecutive days (PEX group). This last procedure 
induces learning of non-aversive SDIA-related infor-
mation without affecting the strength or persistence of 
SDIA-memory, but making it prone to hippocampus-
dependent destabilization and reconsolidation upon 
unreinforced recall [11, 12]. One day later, HAN and PEX 
rats were trained in SDIA (0.8  mA/2  s footshock), and 
24-h afterwards subjected to a 40-s-long unreinforced 
SDIA-memory reactivation session (RA) able to induce 
SDIA-memory reconsolidation but not SDIA-memory 
extinction [11]. Intra-dorsal CA1 infusion of the CaMKII 
inhibitor myristoylated autocamptide-2 related inhibi-
tor peptide (AIP) 5-min after RA caused dose-dependent 
amnesia in PEX but not in HAN animals (Fig.  1a). The 
amnesic effect of AIP (10 nmol/µl) persisted for at least 
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7  days (Fig.  1b), was time-dependent (Fig.  1c), contin-
gent on memory reactivation (Fig.  1d), and independ-
ent of footshock intensity  (Fig.  1e). AIP did not cause 
amnesia when PEX rats were tested for retention 3-h 
post-RA (Fig. 1f ), when they were submitted to a single 
pre-exposure session instead of five (Fig. 1g), or when RA 
lasted 5-s instead of 40-s (Fig. 1h). Dorsal-CA1 αCaMKII 
Thr-286 autophosphorylation, which is usually used 
as a proxy of CaMKII activity, increased rapidly after 
RA in PEX, but not in HAN animals (Fig. 1i; full-length 
blots in Additional file  2: Fig. S1). Hippocampal theta/
gamma phase-amplitude coupling (hPAC) is associated 
with SDIA-memory destabilization in PEX animals, and 

medial septum inactivation abolishes RA-induced hPAC 
and impedes memory destabilization [12]. Thus, if hip-
pocampal CaMKII were really required for SDIA-mem-
ory reconsolidation, then optogenetic inactivation of the 
medial septum of PEX rats during RA should prevent 
the amnestic effect of post-RA AIP administration. To 
evaluate this hypothesis, SDIA-trained PEX rats express-
ing yellow light-sensing archaerhodopsin T in the medial 
septum (Fig.  1j), whose stimulation reduces basal hip-
pocampal theta power without affecting gamma power 
(Fig.  1k) and blocks the RA-induced increase in theta 
power ratio and hPAC (Fig.  1l), were submitted to RA. 
During this session, the animals were not stimulated or 
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Fig. 1 Hippocampal CaMKII is required for fear-motivated avoidance memory reconsolidation. a HAN and PEX SDIA-trained animals submitted to RA 
received intra-CA1 VEH or AIP 5-min post-RA and retention was tested 24-h later. b–h PEX-animals were treated as in a, except that b memory 
was evaluated 7-days post-RA; c VEH or AIP were given 6-h post-RA; d RA was omitted; e a 0.4-mA/2-s footshock was given at TR; f memory 
was evaluated 3-h post-RA; g they were submitted to single SDIA-preexposure session; h RA lasted 5-s. i HAN and PEX SDIA-trained animals 
were or were not (NR) submitted to RA 24-h post-training and 5-min later killed by decapitation to determine dorsal-CA1 αCaMKII and p-Thr286 
αCaMKII levels by immunoblotting. j Microphotographs showing GFP-reported archaerhodopsin-T expression. k Representative spectrogram and 
normalized theta (θ), slow-gamma (γS) and fast-gamma (γF) power showing the effect of yellow-light MS stimulation on dorsal-CA1 LFPs. l Left. 
Mean power ratio (1–100 Hz) during RA for PEX-animals expressing archaerhodopsin-T; bold lines: group mean, shaded areas: SEM. Right. Filtered 
LFP, comodulograms and theta/gamma modulation index (MI). m SDIA-trained PEX-animals expressing archaerhodopsin-T were submitted to RA 
during which the MS was not stimulated  (LightOFF) or stimulated with blue-light  (BlueON) or yellow-light  (YellowON). An additional group received 
40-s-long yellow-light immediately after RA  (YellowON Post-RA). Following these manipulations, rats received intra-dorsal-CA1 VEH or AIP. Retention 
was evaluated 24-h later. n PEX-animals trained in SDIA (0.4-mA/2 s) received AIP 5-min post-RA. One day later, the animals were subjected to a 
test session and when they stepped-down from the platform, they were retrained (Reacq.; 0.4-mA/2 s) and received intra-CA1 VEH or ANI 5-min 
thereafter. Retention was evaluated 24-h later. o PEX-animals trained in SDIA (0.4-mA/2 s) received intra-CA1 VEH or ANI 5-min thereafter and 
retention was evaluated 24-h later. #p < 0.05 in one-sample Student’s t-test, theoretical mean = 1. Data expressed as median ± IQR or mean ± SEM. 
*p < 0.05, **p < 0.01, ***p < 0.001. Details of the statistical analyses are presented in Additional file 1: Table S1
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stimulated in the septum with yellow (565 nm) or blue-
light (470 nm), and 5-min thereafter received intra-CA1 
vehicle or AIP. Retention was tested one day later. As 
shown in (Fig.  1m), AIP caused amnesia in non-stimu-
lated animals as well as in animals stimulated with blue-
light, but not in animals stimulated with yellow-light. Per 
se, yellow-light stimulation did not affect retention and, 
when applied immediately after RA, had no effect on the 
amnesic action of AIP (Fig.  1m). Next, we took advan-
tage of the fact that SDIA memory consolidation, but 
not the additional learning induced by a second SDIA-
training session, requires hippocampal protein synthesis 
[13] to analyze whether the amnesia caused by CaMKII 
inhibition is due to impaired recall or storage deficit. We 
found that SDIA-trained PEX animals that received AIP 
(10 nmol/µl) after RA reacquired the avoidance response 
when retrained one day later, but post-retraining intra-
CA1 infusion of the protein synthesis inhibitor aniso-
mycin (ANI; 160  µg/µl) impeded reacquisition as if the 
animals had to consolidate the SDIA response again 
(Fig. 1n–o).

Our data confirm that unreinforced recall destabilizes 
SDIA-memory only when this memory was acquired 
in a known non-aversive environment, show that hip-
pocampal CaMKII is necessary for SDIA-memory recon-
solidation, and suggest that preventing this process by 
inhibiting CaMKII results in memory erasure. These 
results differ from reports showing that reduced expres-
sion of the CaMKII endogenous inhibitor CaMK2N1 
impairs reactivated contextual fear conditioning (CFC) 
memory persistence, which is associated with decreased 
hippocampal αCaMKII Thr-286 autophosphorylation 
two hours after reactivation [14], and that post-recall 
intra-amygdala administration of AIP does not impair 
CFC-memory but blocks its destabilization [15]. How-
ever, it should be noted that although they may appear 
similar, CFC and SDIA are fundamentally different learn-
ing paradigms, and therefore such conflicting findings 
should not be surprising. Unlike SDIA, CFC reconsolida-
tion-specific mechanisms cannot be easily distinguished 
from those engaged merely as a consequence of mem-
ory recall; moreover, as the CFC reactivation protocol 
is methodologically identical to an extinction session, 
the effect of CaMK2N1 knock-down on the persistence 
of reactivated CFC memory described in [14] cannot be 
unequivocally attributed to reconsolidation or extinc-
tion regulation, as the authors themselves recognize, 
even less so when it has been suggested that hippocampal 
CaMKII is necessary for CFC-memory extinction [16]. A 
previous report indicates that CaMKII is necessary for 
recall-induced CFC destabilization in the amygdala [15]. 
However, we could not study the possible involvement of 
hippocampal CaMKII on SDIA-memory destabilization 

because pre-recall intra-CA1 AIP administration hin-
ders memory expression (Additional file  3: Fig. S2) and 
post-reactivation intra-CA1 AIP is amnestic, which 
prevented us to analyze whether hippocampal CaMKII 
inhibition impedes the amnesia provoked by protein syn-
thesis inhibitors. Post-traumatic stress disorder (PTSD) 
is a mental health condition triggered by experiencing or 
witnessing a terrifying event and characterized by intru-
sive thoughts and flashbacks of the traumatic experience. 
Because learning-based PTSD models posit that classi-
cal conditioning is central to the onset of this disorder, 
most of our knowledge on memory reconsolidation and 
its possible therapeutic implications derive from CFC 
studies. However, CFC does not rely on decision-based 
avoidance responses and hence cannot be used to study 
the exacerbated avoidance of trauma reminders, a key 
diagnostic symptom of PTSD that is much better mod-
elled by SDIA and other avoidance learning tasks, such 
as the shuttle-box avoidance and the platform-mediated 
avoidance paradigms. Our findings are important in this 
regard, inasmuch as they indicate that reconsolidation 
of the mnemonic components of a traumatic experi-
ence may be differentially susceptible to pharmacologi-
cal treatments, which should be taken into consideration 
when planning reconsolidation-interfering psychothera-
peutic strategies.
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