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Abstract 

Ketamine, a non‑competitive antagonist of the N‑methyl‑d‑aspartate receptor (NMDAR), generates a rapidly‑acting 
antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous 
research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a 
subunit of NMDAR. In the present study, we tested whether GluN2D‑containing NMDARs participate in the physiolog‑
ical changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub‑anesthetic dose of ketamine (25 mg/
kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild‑type (WT) mice, but not 
in GluN2D KO mice, 1 h after the injection. The amplitude of sEPSC and paired‑pulse ratio (PPR) were unaltered by 
ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D‑containing NMDARs might play a 
role in the ketamine‑mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine‑induced 
hyperlocomotion.
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Ketamine is an N-methyl-d-aspartate receptor (NMDAR) 
antagonist and has been widely used as an anesthetic 
drug over the past two decades. Due to its rapid anti-
depressant effect, ketamine became a breakthrough in 
the clinical research of depression. Ketamine exerts a 
rapid and long-lasting antidepressant effect in a dose-
dependent manner [1], where a sub-anesthetic dose of 
ketamine (0.3–1 mg/kg in humans [2] and 5–10 mg/kg in 

animals [3], respectively) has been reported to be effec-
tive in alleviating depressive symptoms [2]. However, ket-
amine also has notable side effects, such as psychotomi-
metic symptoms, abuse potential, and neurotoxicity. For 
instance, a higher dose of ketamine (25–50 mg/kg) trig-
gered dissociation [4] and hyperlocomotion in mice [5].

  The NMDAR subunit family is composed of GluN1, 
GluN2A-D, and GluN3A-B subunits. The GluN2D-con-
taining NMDARs reach maximal expression at the first 
postnatal week and become restricted in a few cell types 
including interneurons of the hippocampus and the pre-
frontal cortex [6, 7]. Previous research has implicated 
GluN2D-containing NMDARs in the sustained antide-
pressant effect [8] and the cognitive impairment effect 
[9] of (R)-ketamine, an enantiomer of racemic ketamine. 
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Furthermore, GluN2D knockout (KO) mice did not 
develop ketamine-induced locomotor sensitization [5]. 
However, the physiological mechanism through which 
GluN2D-containing NMDARs contribute to ketamine-
induced hyperlocomotion remains largely unknown. To 
address this question, we measured spontaneous excita-
tory postsynaptic currents (sEPSC) and paired-pulse 
ratio in the medial prefrontal cortex (mPFC) layer 5 
pyramidal neurons of wild-type (WT) and GluN2D KO 
mice 1  h after the injection of a sub-anesthetic dose of 
ketamine, a dose known to trigger hyperlocomotion in 
rodents (Fig. 1A).

WT and homozygous GluN2D KO mice of both sexes 
were used for experiments, aged 6–16 weeks at the time 
of recording. Saline or ketamine (25 mg/kg) ((R,S)-keta-
mine hydrochloride, Yuhan Corporation, Seoul, Korea) 
was intraperitoneally administered 1 h before the decapi-
tation. Mice were anesthetized with isoflurane and sac-
rificed by decapitation in accordance with the regulation 
and policy approved by Institutional Animal Care and 
Use Committee in Seoul National University. Coronal 
slices with 350 μm thickness were obtained as previously 
described [10].

One or two coronal slices were selected according to 
their coordinates from Bregma (AP: +1.70) and trans-
ferred to a submerged chamber for whole-cell record-
ing, continuously perfused with artificial cerebrospinal 
fluid (ACSF) that contained (in mM): 124 NaCl, 3 KCl, 
26  NaHCO3, 1.25  NaH2PO4, 2  MgSO4, 15 d-glucose and 
2  CaCl2 (carbonated with 95%  O2 and 5%  CO2). Pyrami-
dal neurons in layer 5 of the mPFC were recognized by 
their perpendicular distance from the midline. Record-
ings were made primarily within the infralimbic cortex, 
though we could not rule out the possibility that few 
prelimbic neurons were included. Patch pipettes with a 
resistance ranging from 1.5 to 6 MΩ were pulled from 
borosilicate glass and filled with a whole-cell solution 
comprised (mM): 8 NaCl, 130  CsMeSO3, 10 HEPES, 0.5 
EGTA, 4 Mg-ATP, 0.3  Na3-GTP, 5 QX-314, and 0.1 sper-
mine. The pH was adjusted to 7.2–7.3 with CsOH and 
osmolarity was set to 290–300 mOsm/l. Neurons were 
voltage-clamped at − 70 mV throughout the experiment 

and stabilized at least for 5  min before the recording. 
Data were accepted for analysis, only if the series resist-
ance values were < 25 MΩ and varied within 20% during 
the course of the experiment. For sEPSCs experiments, 
the last 3  min of recording were analyzed using Mini 
Analysis Program (Synaptosoft Inc., Decatur, GA, USA). 
The first 25 events from each neuron were used to con-
struct a cumulative histogram.

Ketamine increased the sEPSC frequency of mPFC 
layer 5 pyramidal neurons 1 h after injection in WT mice, 
whereas this increase was absent in GluN2D KO mice 
(Fig. 1B, C). On the other hand, ketamine did not change 
the sEPSC amplitude of mPFC neurons in either WT or 
GluN2D KO mice (Fig.  1D). These results may be due 
to the increase (1) in the number or (2) the presynaptic 
release probability of functional excitatory synapses onto 
the layer 5 pyramidal neurons.

To discern these alternative possibilities, we measured 
paired-pulse ratio, which is known to inversely corre-
late with presynaptic release probability, at excitatory 
synapses of layer 5 pyramidal neurons made by inputs 
from layer 2/3 neurons. The stimulation electrode was 
placed in layer 2/3 perpendicularly aligned with the patch 
pipette in layer 5. Two successive electronic simulations 
were delivered with varying interpulse intervals of 50-200 
ms. The paired-pulse ratio was calculated by dividing the 
peak amplitude of the second EPSC by that of  the first 
EPSC and 4 sweeps were averaged.

Interestingly, no significant differences were observed 
in the paired-pulse ratio (Fig.  1E–G). Even though we 
could not exclude the possibility that changes in release 
probability in other synapses or excitability of presynap-
tic neurons caused the increase in the sEPSC frequency, 
PPR data are consistent with the hypothesis that the 
observed elevation in sEPSC frequency is a result of an 
increased number of excitatory synapses.

WT mice displayed increased sEPSC frequency of 
mPFC pyramidal neurons when ketamine was injected 
(Fig.  1C). Previous research has shown that ketamine 
predominantly inhibits presynaptic GABAergic interneu-
rons, leading to the disinhibition of pyramidal neurons 
in the mPFC [3, 11]. However, we consider it unlikely 

(See figure on next page.)
Fig. 1 Effects of ketamine on the sEPSC of mPFC neurons. (A) Experimental scheme and the recording site in the mPFC. (B) Representative traces 
of sEPSCs. (C) WT mice displayed elevation in the frequency of the sEPSCs 1 h after ketamine (25 mg/kg) injection compared to their saline‑injected 
counterparts, whereas GluN2D KO mice did not (n = 18‑21 cells, 5‑6 mice/group; ketamine effect,  F1, 78 = 8.473, p = 0.0047; genotype,  F1, 78 = 5.067, 
p = 0.0272; interaction,  F1, 78 = 15.79, p = 0.0002; WT ketamine vs saline, p < 0.0001; GluN2D KO ketamine vs. saline, p = 0.7099). (D) No significant 
differences were observed in the amplitude of sEPSC. (E) Representative traces of paired‑pulse ratio (PPR) at 150 ms inter stimulus interval (F, G) 
No significant differences were observed in PPR at any of the inter‑stimulus intervals examined (50–200 ms) (n = 13‑14 cells, 4‑5 mice/group). 
Electrophysiology data are represented as mean ± SEM. sEPSC, PPR: 2‑way ANOVA with Post hoc Sidak’s multiple‑comparisons test. **** p < 0.0001. 
ns, nonsignificant



Page 3 of 5Han et al. Molecular Brain          (2021) 14:174  

Fig. 1 (See legend on previous page.)
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that the elevated sEPSC frequency in the current study 
was a direct reflection of the disinhibition of excitatory 
neurons, as ketamine would have been washed out dur-
ing the preparation of the brain slice. Rather, we specu-
late that it was a consequence of the synaptic-activity 
dependent synaptogenesis [12, 13] that might have been 
induced and stabilized by disinhibition of pyramidal neu-
rons. The resultant increase in the glutamatergic trans-
mission in mPFC likely has augmented dopamine release 
in both mPFC and striatum resulting in hyperlocomo-
tion, as previously suggested [14, 15].

In contrast, GluN2D KO mice did not show increased 
sEPSC frequency in response to the ketamine injec-
tion. Moreover, they did not develop ketamine-induced 
hyperlocomotion [5] and the increase of extracellular 
dopamine level in mPFC in response to phencyclidine, 
another non-competitive NMDAR antagonist [16]. Given 
that GluN2D-containing NMDARs are mainly expressed 
in mPFC interneurons [7], our data suggest a possibility 
that ketamine disinhibits pyramidal neurons partially by 
blocking GluN2D-containing NMDARs in interneurons 
leading to the hyperlocomotion.

In conclusion, the present study adds evidence to the 
view that GluN2D-containing NMDARs may participate 
in the process through which ketamine increases gluta-
matergic synapses of pyramidal neurons in the mPFC, 
and thereby provides a potential mechanism of keta-
mine-triggered hyperlocomotion.
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