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Transmembrane protein 108 inhibits 
the proliferation and myelination 
of oligodendrocyte lineage cells in the corpus 
callosum
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Abstract 

Background: Abnormal white matter is a common neurobiological change in bipolar disorder, and dysregulation 
of myelination in oligodendrocytes (OLs) is the cause. Transmembrane protein 108 (Tmem108), as a susceptible gene 
of bipolar disorder, is expressed higher in OL lineage cells than any other lineage cells in the central nervous system. 
Moreover, Tmem108 mutant mice exhibit mania-like behaviors, belonging to one of the signs of bipolar disorder. 
However, it is unknown whether Tmem108 regulates the myelination of the OLs.

Results: Tmem108 expression in the corpus callosum decreased with the development, and OL progenitor cell 
proliferation and OL myelination were enhanced in the mutant mice. Moreover, the mutant mice exhibited mania-like 
behavior after acute restraint stress and were susceptible to drug-induced epilepsy.

Conclusions: Tmem108 inhibited OL progenitor cell proliferation and mitigated OL maturation in the corpus cal-
losum, which may also provide a new role of Tmem108 involving bipolar disorder pathogenesis.
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Introduction
Bipolar disorder (BD) is a severe mental disease charac-
terized by manic states being usually interspersed with 
periods of depression [1], affecting 1–1.5% of the popu-
lation [1, 2]. Aberrant white matter microstructure is 
proposed as a mechanism underlying BD, including the 
dimension of irritability and widespread increases in 

radial diffusivity [3–5]. Abnormal white matter connec-
tivity may be associated with BD pathophysiology [4, 6], 
and elevated rates of white matter hyperintensities are 
widely observed in BD [3–5].

The corpus callosum (CC) is the brain’s major white 
matter fiber tract [6, 7], containing most axonal trans-
missions between the two cerebral hemispheres. The CC 
is among the last brain structures to complete myelina-
tion [8], which is also a period accompanying the peak 
onset of BD [9]. Anatomical abnormalities in the CC have 
been reported in magnetic resonance imaging studies 
in BD patients, possibly because of altered myelination 
leading to impaired interhemispheric communication 
[10]. Changes in area and thickness in the CC have been 
reported in BD, and neuropathological data and imaging 
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suggest possible abnormalities in myelination and glial 
function [2, 9]. Given the strong genetic underpinnings 
of both BD and white matter microstructure, such white 
matter aberrations may be a disease marker and an endo-
phenotype of BD [3, 11].

Several genome-wide association studies (GWAS) sug-
gest that Tmem108 is a susceptible gene of BD [12–14], 
and the relevant single nucleotide polymorphism (SNP) 
site is not in the coding region of Tmem108, which is 
speculated that the SNP may affect its expression [14, 
15]. Strikingly, the recent GWAS screened BD risk loci in 
the Han Chinese population, covering 1822 BD patients 
and 4650 control individuals, and the data was replicated 
analysis. After finally multiple analyses between Han Chi-
nese and European populations, a new SNP (rs9863544) 
in BD patients were found, locating in the upstream 
regulatory region of the Tmem108 gene [14]. Tmem108 
expression change may be one of the onset reasons for 
BD.

Our previous research found that adult neurogenesis is 
impaired in Tmem108 null mice, and manic behavior is 
found in the mutant mice [16], indicating that Tmem108 
also is related to BD. Furthermore, RNA sequencing 
showed that Tmem108 expression is much higher in 
newly formed OLs than in other cells in the central nerv-
ous system (CNS) [17]. Therefore, these studies indicate 
that Tmem108 may play a role in OL development and 
myelination.

In this study, Tmem108 expression in the CC was 
higher in young mice than in adult mice and colocal-
ized with OLs in young mice CC, implying promising 
function in myelination with the development. Intrigu-
ingly, myelin basic protein (MBP) was highly expressed in 
Tmem108 mutant mice in immunohistochemistry (IHC) 
staining and western blots (WB) assay, and electron 
microscopes revealed hypermyelination in the CC of the 
mutant mice, especially early-onset myelination in small 
axons. Consistently, the cytological experiment showed 
that Tmem108 inhibited OL progenitor cell (OPC) pro-
liferation and mitigated the maturation of CC OLs by 
preventing the myelination of small-diameter axons. 
Moreover, Tmem108 mutant mice exhibited manic 
behavior after acute restraint stress and were susceptible 
to drug-induced epilepsy. This study disclosed the func-
tion of Tmem108 in CC, which may also provide a new 
role of Tmem108 involving BD pathogenesis via regulat-
ing the myelination.

Materials and methods
Animals
Tmem108 mutant (Tmem108-LacZ; MMRRC: 032633-
UCD) mice were described previously [16, 18, 19]. In 
brief, the first coding exon of Tmem108 was replaced 

with the β-galactosidase/neomycin cassette. Tmem108 
mutant mice in the paper were Tmem108-LacZ homozy-
gous (Tmem108 –/–). Mice were fed in a room 12-h 
light/dark cycle, at 22–25℃, with ad  libitum access to 
rodent chow diet and clean water. The experimental pro-
tocols were performed according to the "guidelines for 
the care and use of experimental animals" issued by Nan-
chang University for research about vertebrate animals. 
For in  vivo experiment, surgery was performed with 
sodium pentobarbital anesthesia (50  mg/kg, intraperi-
toneal injection), and efforts were executed to minimize 
suffering and reduce the animal number. After the termi-
nal experiments, mice were euthanized by carbon dioxide 
inhalation.

Reagents
X-gal (5-Bromo-4-chloro-3-indolyl-β-d-galactopyranoside) 
was purchased from Sigma-Aldrich (B4252, 30  mg/ml 
for staining); Pilocarpine hydrochloride and scopolamine 
methyl-bromide were also purchased from Sigma-Aldrich; 
Other chemicals were purchased from Sangon Biotech 
(BBI Life Sciences CO. China).

Antibodies information as follows: Rabbit anti-β-
Actin antibody (Santa Cruz Biotechnology, sc-1616-R; 
1:2000 for blotting); Rat anti-MBP antibody (Millipore, 
MAB386; 1:2000 for blotting; 1:1000 for staining); Rabbit 
anti-TMEM108 antibody (1:1000 for blotting) was kindly 
presented by Dr. J. Liu [20]; Goat anti-rabbit IgG poly-
HRP secondary antibody (32260) and Goat anti-rat IgG 
poly-HRP secondary antibody (31471) were purchased 
from Thermo Fisher Scientific (1:2000 for blotting); 
Mouse anti-Ki67 (BD Biosciences, 550609; 1:1000 for 
staining); Rabbit anti-Olig2 antibody (Millipore, AB9610, 
1:1000 for staining); Rabbit anti-PDGFRα antibody 
(Cell Signaling Technology; 3174; 1:500 for staining); 
Rat anti-PDGFRα antibody (BD Biosciences; 558774; 
1:200 for staining); Mouse anti-APC antibody (CC1, 
Millipore Sigma, MABC200, 1:800 for staining); Rab-
bit anti-Caspase3 antibody (Cell Signaling Tech, 9662; 
1:1000 for staining); Alexa Fluor 488/568 goat anti-rabbit 
lgG (Thermo Fisher Scientific, A32731, A11011; 1:1000 
for staining), Alexa Fluor 488/568 goat anti-mouse lgG 
(Thermo Fisher Scientific, A-11029, A-11031; 1:1000 for 
staining).

Behavioral analysis
For the forced swimming test (FST), mice were forced 
to swim in a two-liter beaker filled with about fifteen-
centimeter-height water for 6 min. A camera monitored 
mice movements with tracking software (Video freeze 
version 2.5.5.0, Med Associate Inc.). The immobility in 
the last four min was obtained for statistical analysis.
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According to the previous study, the pilocarpine model 
was conducted [21, 22]. In order to minimize the periph-
eral side effects, mice were injected with scopolamine 
methyl-bromide (2  mg/kg mice weight, intraperitoneal 
injection) 30 min before pilocarpine hydrochloride (dis-
solved in 0.9% saline, 200 mg/kg mice weight, intraperi-
toneal injection) treatment. Then, mice were injected 
with pilocarpine (100 mg/kg mice weight) every 30 min. 
Behavioral seizure score was according to the criteria by 
Racine [21]: stage 0, no seizure; stage 1, head nodding; 
stage 2, sporadic full-body shaking and spasms; stage 3, 
chronic full-body spasms; stage 4, jumping, shrieking, 
and falling over; stage 5, violent convulsions, falling over 
and dying.

Western blots (WB)
WB was conducted as our previous research, and white 
matter (CC and medulla) and gray matter (top layers of 
cortex) separation were according to the previous study 
[23]. We homogenized the tissues in lysis buffer (0.1% 
SDS, 0.5% sodium deoxycholate, 1% NP-40, 1 mM EDTA, 
1 mM PMSF, 1 mg/ml aprotinin, leupeptin, and pepstatin 
A protease inhibitors, in 1 × DPBS). The protein was sep-
arated by SDS-PAGE and then transferred to a nitrocellu-
lose membrane. After being blocked, the membrane was 
incubated with primary antibody and HRP-coupled sec-
ondary antibody in turn. In the last, the immunoreacted 
bands were captured by an enhanced chemiluminescence 
system (Bio RAD), and the band intensities were per-
formed with ImageJ software.

Immunohistochemistry (IHC) staining
The mice brain’s coronal setions  (30 µm) were prepared 
by microtome (Leica CM1950) for IHC. After incubated 
in a citrate buffer for antigen repair, sections were per-
meabilized with a 20% tween for 20 min. Next, the sec-
tions were blocked for 1  h at room temperature and 
then incubated with primary antibody at 4 °C overnight. 
Afterward, sections were exposed to the secondary anti-
body for 2 h in the dark at room temperature. Finally, the 
sections were transferred to the slides and mounted with 
coverslips. The images were captured with an inverted 
fluorescence microscope (Olympus FSX100). DAPI was 
used to identify the cellular nuclei.

EdU labeling
According to the previous study, the EdU labeling was 
conducted with minor modified [24]. Daily intraperi-
toneal injection of 3  mg EdU (Carbosynth, NE08701) 
per gram body weight (P8 mice) was performed to 
label dividing cells for 1  week. 24  h after the last injec-
tion, brain sections were collected, rinsed 3 times in PBS 
(phosphate-buffered saline), and then permeabilized for 

30 min in PBS with 0.5% Triton X-100. After another 3 
washes in PBS, the brain sections were incubated in a 
freshly-made EdU development cocktail (100  mM Tris-
buffered saline pH 7.4, 2  mM CuSO4 (Sangon Biotech 
A600063, CAS #7758-99-8), 2 μM 6-FAM Azide (Lumi-
probe #35130) and 100  mM Sodium Ascorbate (Sigma-
Aldrich A7631, CAS#134-03-2). Following DAPI staining 
for 10  min, the brain sections were washed 3 times in 
PBS and mounted for imaging.

Quantitative real‑time PCR (qPCR)
Total RNA was isolated from mice brains accord-
ing to the manufacturer’s instructions of TRIzol Rea-
gent (Invitrogen), and complementary DNA (cDNA) 
was synthesized following the manufacturer’s proto-
col of High-Capacity cDNA Reverse Transcription Kit 
(Thermo Fisher Scientific, 4368814). The qPCR primer 
sets as below: Tmem108 (5′-CCT GAG CTA CTG GAA 
CAA TGCC-3′ and 5′-CAG TGT CTC GAT AGT CGC 
CAT TG-3′), and Gapdh (5′-CAT CAC TGC CAC CCA 
GAA GACTG-3′ and 5′-ATG CCA GTG AGC TTC CCG 
TTCAG-3′). qPCR was carried out by the StepOnePlus 
Real‐Time PCR system (Applied Biosystems) using the 
mix. qPCR was performed as described previously [25]. 
mRNA expression levels were normalized to the refer-
ence gene Gapdh using a ΔCT method.

X‑gal staining
X-gal is an inert chromogenic substrate for β-gal, and 
β-gal hydrolyzes X-gal into colorless galactose and 
4-chloro-3-brom-indigo, forming an intense blue pre-
cipitate. X-gal staining was carried out as our previous 
study [16, 26]. In brief, the coronal sections of Tmem108 
mutant mice were prepared by microtome (Leica 
CM1950) and permeabilized with a detergent solution 
(0.01% sodium deoxycholate, 0.02% NP-40, 2 mM MgCl2 
in 0.1  M pH 7.4 phosphate buffer) at 4  °C. After incu-
bated in staining solution (5 mM potassium ferricyanide, 
5  mM potassium ferrocyanide, 2  mg/ml X-gal in deter-
gent solution) overnight at 37 °C, the sections were trans-
ferred to the slides and mounted with coverslips. Finally, 
the images were captured with an inverted fluorescence 
microscope (Olympus FSX100).

Electron microscopy
For electron microscopy, young (P14) and adult (P60) 
male mice were perfused through the heart with phos-
phate buffer (PB 0.1 M, pH 7.4) followed by 2% paraform-
aldehyde with 0.5% glutaraldehyde in PB. After carefully 
dissecting the brain, the CC was immediately put into 
2.5% glutaraldehyde incubating overnight at 4  °C and 
rinsed in PB 5 min triple times. Then at room tempera-
ture, the CC was postfixed in1% osmium tetroxide for 
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1  h, dehydrated through 30% and 50% ethanol 15  min 
in turn, and immersed in 70% uranyl acetate saturat-
ing ethanol overnight. Afterward, the sample was dehy-
drated through 80% and 95% ethanol 15  min, in turn, 
followed by incubation of 100% ethanol 40  min twice. 
The dehydrated sample was infiltrated in epoxypro-
pane (30 min), epoxypropane:ethoxyline resin (1:1, 2 h), 
epoxypropane:ethoxyline resin (1:2, 1 h), and ethoxyline 
resin (Ephon812, 2 h) in a gelatin capsule in turn. Then, 
the sample was polymerized in an oven at 45  °C 12  h 
and 65  °C 48  h. Next, ultra-thin Sects.  (70  nm) of the 
transversal cut CC axons were prepared on an ultrami-
crotome (LKB-Nova, Sweden). The sections were trans-
ferred onto 100 mesh copper grids followed rinsed with 
 ddH2O 15  min triple times and stained in lead citrate 
15 min followed with  ddH2O 10 min triple times. Finally, 
the sections on the grids were examined on a transmis-
sion electron microscope (JEOL, JEM-2100, Japan). The 

g-ratio of a myelinated axon was calculated as the axonal 
diameter and fiber diameter ratio.

Statistical analysis
Values of all data are mean ± SEM (standard error of 
the mean). Statistical analysis was carried out by Graph-
Pad Prism 6.01. The statistical significance between the 
mutant and control mice was calculated by two‐way 
ANOVA (analysis of variance) and a two-tailed student 
t-test. The difference was defined as significant if the 
p-value < 0.05.

Results
Higher Tmem108 expression of CC OLs in young mice 
than in adult mice
Tmem108 expression was verified by qPCR and WB 
(Fig.  1). For the whole brain of wild-type mice, qPCR 
results showed that Tmem108 had a high expression 
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Fig. 1 Tmem108 expression profile in several areas of the brain. A Relative expression of Tmem108 in postnatal mice brain was quantified by qPCR. 
Gapdh was used as an internal control (Internal control of the below is same in qPCR assay), and Tmem108 expression in P0 mice was defined as 1; 
Wild-type male mice per group, n = 5. B Representative image of TMEM108 level in postnatal mice brains verified by western blotting. β-ACTIN was 
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expression in P0 mice CC was defined as 1; Wild-type male mice per group, n = 3 (Unpaired T-test were made to compare with P0 data, n.s., not 
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in the young mice (Fig.  1A), and the protein level of 
Tmem108 was similar to the mRNA level (Fig. 1B). qPCR 
and WB were utilized to check Tmem108 expression in 
different brain areas (Fig.  1C, D), including cerebellum 
(CB), thalamus (THY), hippocampus (HP), corpus callo-
sum (CC), cerebral cortex (CT), striatum (STR), prefron-
tal cortex (PFC) and olfactory bulb (OB). Though CC and 
STR seemed to like having a low expression of Tmem108, 
the results supported Tmem108 expression in both areas.

The highest expression cell type in the mice brain was 
newly formed OLs (Additional file  1: Fig. S1) [13]. CC 
was considered an area with high myelinated axons, 
and therefore, CC was recruited to explore the role 
of Tmem108 in the OL lineage cells. Focusing on CC, 
Tmem108 was mainly expressed in PDGFRα+  Olig2+ 
cells (OPCs) in P7 mice (Additional file  1: Fig. S2A-B), 
and its expression profiles changed in P14 mice (Addi-
tional file  1: Fig. S2C-D), without difference among 
OPCs (PDGFRα+), OLs  (CC1+) and the double negative 
(PDGFRα−  CC1−) cells. Considering Tmem108 being 
highly expressed in newly formed OLs (Additional file 1: 
Fig. S1), the double negative cells in the CC may repre-
sent premyelinating OLs.
Tmem108 expression decreased in postnatal develop-

ment by qPCR assay, and Tmem108 mRNA relative level 
in P7 mice CC was about two times that in P60 mice 
CC (Fig.  1E). Meanwhile, X-gal staining confirmed that 
Tmem108 expression was higher in young mice CC than 
in adult mice CC (Fig.  1F). Co-staining assay suggested 
that X-gal was remarkably co-stained with OL marker 
Olig2 of CC in the young mice (Fig. 1G).

Hypermyelination of the CC in Tmem108 mutant mice
Myelin sheath can be observed by transmission electron 
microscopy, presenting thick, dark closed curves around 
myelinated axons. In this research, the myelinated axons 
of the CC from young and adult perfused male mice were 
examined under an electron microscope. The myelinated 
axons’ ultrastructure was obtained for statistics, and the 
percentage of the myelinated axons in the total axons was 
reported. Littermate male mice were used to minimize 
the background effect from other genes between the 
mutant mice and the control mice.

Because myelination increases with mice’s develop-
ment, it was not surprising that the percentage of the 
myelinated axons in the adult mice was 10–30% higher 
than in the young mice (Fig. 2B, F). The g-ratio value of 
a myelinated axon is defined as the ratio of the axonal 
diameter and myelinated fiber diameter, considered a 
typical myelination indicator. Accordingly, a high value of 
g-ratio indicates a low value of relative myelin thickness. 
Myelinated axon percent in Tmem108 young mutant 
mice CC resembled the control mice CC (Fig.  2B), but 

the g-ratio value of CC in the young mutant mice was 
lower than the control mice (Fig.  2C), implying hyper-
myelination in the mutant mice. In line with expectation, 
hypermyelination of the CC in the adult mutant mice 
was observed (Fig. 2G), and myelinated axon percent in 
the adult mutant mice was higher than the control mice 
(Fig. 2F). Furthermore, the mean g-ratio values of the CC 
axons with different diameters in the mice were counted 
and statistically analyzed (Fig. 2D, H). Notably, thin fib-
ers in the myelinated axons of adult mice CC processed a 
small value of g-ratio (Fig. 2H).

Preferred myelination of thin axons in Tmem108 mutant 
mice
Electron microscopy also demonstrated the enhancement 
of OL maturation in the mutant mice. In the adult mice, 
myelin sheath was not different between the mutant and 
the control mice (Fig. 2E, K), though their g-ratio was dis-
tinct (Fig. 2G). The percentage of diverse diameter fibers 
in total myelinated axons was investigated (Fig. 2I). Strik-
ingly, nearly half myelinated axons in the mutant mice 
were thin fibers, with the axon diameter no more than 
600  nm (Fig.  2I), and the diameter of myelinated OLs 
in the mutant mice was smaller than that in the control 
mice (Fig. 2J).

High expression of Mbp in Tmem108 mutant mice
Mbp mRNA levels and MBP protein were examined in 
the postnatal mice brain (Fig. 3A, D), in gray matter and 
white matter of adult mice (Fig. 3B, E), and CC of adult 
mice (Fig.  3C, F). Mbp mRNA level seemed consistent 
with MBP protein level in the mutant mice (Fig. 3A–F). 
Whole-brain MBP level in postnatal mice was quanti-
fied by WB (Fig.  3D), and MBP expression was higher 
in Tmem108 mutant mice than in the control mice after 
birth. According to the previous study [23], gray mat-
ter and white matter were separated, and the latter were 
considered brain areas with plenty of myelinated axons. 
WB indicated that white matter in the mutant mice brain 
had more MBP protein than in the control brain (Fig. 3E). 
Consistent with anticipation, MBP in CC of the mutant 
mice brain was higher than the control brain (Fig. 3F).

Although Tmem108 mutant did not alter the CC area 
(Fig. 3G, H), cerebral cortex structure, and the hippocam-
pus construction (Additional file 1: Fig. S3), MBP fluores-
cence intensity of the brain CC in Tmem108 mutant mice 
elevated (Fig. 3G, I).

The proliferation of OL increased in the CC of the young 
mutant mice
Myelination begins relatively late in the development of 
mice until after birth, and myelin sheaths are first seen 
at P11. Increased myelination occurs during neonatal 



Page 6 of 13Wu et al. Molecular Brain           (2022) 15:33 

development of the mice [27]. We speculated that young 
mice before P11 might have a high proliferation of OPCs 
or newly formed OLs. EdU was injected into P8 mice 
once a day for 7 days. CC of the P15 mice was co-stained 
in EdU with Olig2 (Fig.  4A).  EdU+  Olig2+ cell density 
increased in the mutant mice (Fig. 4B), which indicated 
high proliferation of the OPCs or newly formed OLs in 
the mutant mice. Moreover, in other words, the result 
suggested that Tmem108 inhibited OPC and newly 
formed OLs proliferation.

The maturation of CC OLs in Tmem108 mutant mice 
was enhanced
To investigate the OLs maturation in the Tmem108 
mutant mice, we utilized CC1 staining to evaluate the 
maturation of CC OL lineage cells in adult mice (Fig. 5). 
OL lineage cells proliferation increased in the mutant 
mice, but OL lineage cells density did not change in 

adult mice (Fig. 5B). Therefore, Caspase3, as an apopto-
sis marker, was engaged in assessing the apoptosis con-
dition in the Tmem108 mutant CC area. The mutant 
mice displayed hyperapoptosis conditions in the CC area 
(Fig. 6). Intriguingly, mature OL lineage cells represented 
by Olig2 and CC1 double-positive cells increased in the 
mutant mice (Fig. 5C), implying that Tmem108 mitigated 
the maturation of CC OLs.

Mania‑like behavior and easily induced epilepsy 
in Tmem108 mutant mice
Tmem108 mutant mice display anti-depression behavior 
(mania-like) behavior in the previous study [16]. In this 
study, 24-h restraint stress worsened the mania behav-
ior in FST (Fig.  7). Over half of Tmem108 mutant mice 
exhibited severe mania-like behavior during the restraint 
stress and died of physical exertion (Fig.  7C). Further-
more, after the restraint stress, the remaining mutant 
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mice struggled desperately without rest in FST (Fig. 7B), 
indicating severe mania-like behavior in the mutant mice. 
Meanwhile, the control mice could be separated into the 
mania-like group, depressive group, and resistant group 
(Fig. 7B).

Due to the similarities and the behavioral manifes-
tation between pathophysiological mechanisms and 
the chronic seizures for their spontaneous and recur-
rent characteristics, the pilocarpine injection model is 

considered a classic experimental protocol to mimick 
human temporal lobe epilepsy [28]. The pilocarpine 
model was utilized to evaluate the potential epilepsy of 
the mutant mice. In order to avoid the peripheral side 
effects, scopolamine block was injected before the pilo-
carpine treatment (Fig.  7D). The mice were observed 
continuously for behavioral seizures after each pilocar-
pine injection. Tmem108 mutant mice quickly reached 
seizure stage 5 compared with the control mice (Fig. 7E, 
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F), indicating Tmem108 involved the occurrence of 
induced epilepsy.

Discussion
Abnormal myelin development and the mental diseases
Although SCZ and BD account for 2–4% of the world 
population, the pathogenesis and treatment of SCZ and 
BD are unclear and unsatisfied [29, 30]. Strikingly, imag-
ing and autopsy studies not only show that abnormal 
white matter is a common neurobiological change in BD 
and SCZ patients [4] but also reveal that SCZ patients are 
accompanied with dysregulation of OL related processes, 
such as myelination developmental disorder, abnormal 
expression of myelination gene and number changes of 
OLs [31, 32]. However, the molecule linking abnormal 
myelination with mental diseases is unclear.

The myelin sheath is composed of bilayer lipids as the 
frame, with proteins embedded as one of the plasma 
membranes. Most of the proteins in the myelin sheath 
are transmembrane proteins, such as MBP and prote-
olipid protein. In these proteins, MBP accounts for 30% 

of the total myelin protein in the CNS and is critical for 
myelination [33, 34]. MBP expression was enhanced in 
Tmem108 mutant mice via WB and IHC staining, and 
the mutant mice also exhibited hypermyelination by elec-
tron microscopy.

The myelin sheath in mature OL acts as an external 
insulator for current conduction, facilitating rapid salta-
tory impulse conduction with reduced axonal diameters. 
Moreover, myelin also provides essential nutritional sup-
port for myelinated neurons. Myelinated fibers are widely 
distributed in the brain, and myelin sheath is essential for 
maintaining neural circuits. Accordingly, hypomyelina-
tion or hypermyelination of OL deriving from abnormal 
myelination may be one of the bases of cognitive impair-
ment in SCZ and BD, also relating to poor prognosis [31, 
35].

The cause of abnormal behaviors in Tmem108 mutant 
mice is complicated. Tmem108 mutant mice in this 
research were Tmem108 null mice. In the previous stud-
ies, Tmem108 knockout leads to a decrease of adult neu-
rogenesis in the dentate gyrus [16] and impairs spine 
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development and glutamate transmission [18]. So, neu-
ronal deficits in the mutant mice may also induce manic 
behavior and easily be induced epilepsy. Therefore, single 
or both neuronal and oligodendrocyte loss of TMEM108 
in the brain may contribute to abnormal behaviors. Con-
dition knockout Tmem108 in OLs or neurons will pro-
vide direct evidence for the behavior change.

Potential multiple functions of Tmem108 in the CNS
Tmem108, also known as Retrolinkin [20, 36, 37], is 
located on human chromosome 3q21. GWAS found 
that TMEM108 is not only related to substance addic-
tion [38], smoking withdrawal [39], and alcohol addiction 
[40–43], but also is a susceptibility gene of SCZ [12, 13, 
15] and BD [12–14].

O’Donovan et al. found that the SNP (rs7624858) muta-
tion in the intron of Tmem108 is related to SCZ [15, 44]
and speculated that the site caused Tmem108 to become 
a susceptibility gene of SCZ by affecting gene expres-
sion. Jiao et al. disclosed that Tmem108 mutant mice are 
impaired in spatial memory, and fear startles contextual 
memory and is more sensitive in PPI performance [18], 
a classic and plausible psychophysiological measurement 
of sensorimotor gating for SCZ in rodents and humans 
[45, 46].

The nature of the severe mental illness has been 
debated for more than one century. According to the pre-
vailing manuals, International Classification of Diseases, 
BD, and schizophrenia reveal striking similarities, and 
the difference is that sensory gating and cognitive impair-
ments are less pronounced in BD patients [47]. BD and 
schizophrenia consistently ranked among the leading 
causes of disability worldwide [48, 49], with similarities 
across multiple levels, such as overlapping brain struc-
tural [50, 51] and shared genetic risk factors [52–55]. BD 
and schizophrenia are severe psychiatric disorders with 
high heritability, but to date, unknown etiology, sharing 
genetic risk factors, and a possible illness mechanism is 
abnormal myelination [11, 56, 57].

Although Tmem108 mutant impairs adult neurogenesis 
of the mice, it does not induce depression-like behavior 
but stirs manic-like behavior, suggesting Tmem108 is 
higher correlating with BD than depression [16]. Strik-
ingly, one recent GWAS screened BD risk loci in the Han 
Chinese population, covering 1822 BD patients and 4650 
control individuals, and the data was replicated analy-
sis. After finally multiple analyses between Han Chinese 
and European populations, a new SNP (rs9863544) in BD 
patients were found, locating in the upstream regulatory 
region of the Tmem108 gene [14]. Tmem108 expression 
change may be one of the onset reasons of the related 
psychiatry diseases.

Researchers have debated whether severe, chronic irri-
tability without episodic mania constitutes a develop-
mental phenotype of BD [5]. Neurobiological models of 
BD emphasize white matter aberrant development, and 
white matter microstructure is often described as frac-
tional anisotropy, which is positively associated with the 
smaller axon diameter and increased axon packing den-
sity [5].

The potential molecular mechanism of Tmem108 
regulating myelination
In 2014, Zhang et  al. purified eight representative cell 
populations from the cortex and generated the RNA 
transcriptome database for the different types of cells 
[17] (Additional file 1: Fig. S1), which indicates Tmem108 
is expressed much higher in newly formed OLs than in 
other OL lineage cells or neurons. Intriguingly in previ-
ous research, Tmem108 was found highly expressed in 
the granular cells of the dentate gyrus [16, 18]. In this 
research, OL lineage cells exhibited higher Tmem108 
expression than other cells in mice CC. Tmem108 mutant 
mice had manic-like behavior and were more active than 
the control group in forced swimming and tail suspen-
sion experiments [16]. Moreover, 24-h restraint exacer-
bated the manic-like behavior of the mutant mice, and 
the mutant mice were easily induced epilepsy by pilo-
carpine, which may be partially related to the abnormal 
myelination.

Although Tmem108 expression was low in the CC of 
adult mice without X-gal staining detection, its expres-
sion was detectable in young wild-type mice and could be 
colocalized with Olig2 positive cells by utilizing the gene 
reporter mice. Tmem108 was highly expressed in the cer-
ebral cortex and hippocampus, with low expression in the 
CC; no alteration was found in the CC area, the cerebral 
cortex and the hippocampus construction in Tmem108 
mutant mice. However, MBP staining suggested no dif-
ference between Tmem108 mutant mice and the control 
mice (Additional file  1: Fig. S4), which was inconsistent 
with high MBP in the mutant mice CC. The main reason 
may be the lower density of the OLs in the cerebral cor-
tex than CC.

To explore how Tmem108 inhibited proliferation and 
myelination of OL cells, gene expression with myelina-
tion regulation [58] was detected by qPCR. Intriguingly, 
Tcf4 was also expressed highly besides myelin regulatory 
factor (Myrf) in all three brain areas of Tmem108 mutant 
mice (Additional file  1: Fig. S5). In previous research, 
Tmem108 was reported to involve adult neurogenesis 
by the Wnt signaling pathway. In CC, most genes with 
significantly altering expression were downstream of 
the Wnt signaling pathway, such as ID2, ID4 and TCF4/
TCF7L2.
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Wnt signaling plays a complicated role in the OL mye-
lination, depending on the final effector in the signaling 
pathway. Canonical Wnt/β-Catenin signaling pathway 
strongly inhibits differentiation [59–61]. Under Wnt3a 
treatment, differentiation of OPC is strongly delayed or 
blocked [61], recruiting TCF4/TCF7L2 to β-Catenin tar-
get genes to promote proliferation [60, 62]. ID2 and ID4 
are the potential targets of Wnt/β-Catenin/TCF4 signals 
in OL development.

Not surprisingly, β-Catenin decrease leads to enhanc-
ing the premyelinating OL. However, OL differentiation 
is not enhanced but reduced in Tcf7l2 knockout mice [59, 
62], and differentiation is delayed in β-Catenin inacti-
vated mice [63], indicating the complexity of β-Catenin 
/TCF7L2. The potential mechanism is TCF7L2 interact-
ing with HDAC1 (Histone deacetylases 1) and HDAC2, 
which repress the expression of differentiation inhibi-
tors [59]. Thereby, TCF7L2 acts like a molecular switch, 
blocking or promoting OL differentiation by associating 
with the different binding partners [64]. We speculated 
that Tmem108 regulated proliferation and myelination 
via the Wnt signaling pathway depending on different 
effectors.

The potential molecular mechanism of TMEM108 
regulating myelination was complicated. Interac-
tion between TMEM108 and Wnt signaling pathway 
increased its functional complexity and diversity. In 
OPCs, TMEM108 may inhibit proliferation via restrict-
ing β-Catenin/TCF7L2, and simultaneously, TMEM108 
may also modulate differentiation via limiting HDAC/
TCF4 interaction. In premyelinating OLs, TMEM108 
may mitigate OL maturation through confining Myrf 
expression. The hypotheses need further research to ver-
ify them via in vivo and in vitro assays.

Conclusion
This study disclosed that Tmem108 inhibited OPC prolif-
eration and mitigated the maturation of CC OLs, which 
may also provide a new role of Tmem108 as a BD risk 
gene via regulating myelination.
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Additional file 1: Fig. S1. Tmem108 expression profiles by cell type in 
the mice brain from RNA sequencing [13]. Fig. S2 Tmem108 expression 
in CC was mainly related to OPCs in P7 mice, and the expression profiles 
changed in P14 mice. A. Representative images of CC area of Tmem108 
mutant P7 mice. The arrows showed the X-gal staining dots, which 
indicated the potential areas of Tmem108 expression. The right-below 
panel was signified the white rectangular area in the middle-below panel. 
B. Quantify of PDGFRα+X-gal+ cells percent in total X-gal+ cells in CC 
area (Tmem108 −/− mice, n = 4; Unpaired T-test analysis; * p < 0.05). C. 
Representative images of CC area of Tmem108 mutant mice. The red arrow 
showed the X-gal staining dot relating to PDGFRα+ OL. The white arrows 
showed the X-gal staining dots associated with the  CC1+ cell, and the 
yellow arrows indicated the X-gal staining dots connecting with double 
negative (PDGFRα−  CC1−) cells. The right-below panel was signified the 
white rectangular area in the middle-below panel. D. Quantify different 
types of X-gal+ cells percent in total X-gal positive cells in the CC area 
(Tmem108 −/− mice, n = 4; One-way ANOVA analysis; n.s., not signifi-
cant). (Scale bar = 20 μm; Values are means ± SEM). Fig. S3 No structural 
change of the cerebral cortex and the hippocampus in Tmem108 mutant 
mice. A. No structural alteration of cerebral cortex in the mutant mice. 
B. No structural change of the hippocampus in the mutant mice. (Scale 
bar = 200 μm; Male adult mice per group n = 3). Fig. S4 MBP expression in 
Tmem108 mutant mouse cerebral cortex. A. Representative images of MBP 
staining in mice cerebral cortex. B-C. Quantified MBP fluorescence area (B) 
and fluorescence intensity of cerebral cortex in Tmem108 mutant mice. 
There was no difference between the mutant mice and the control mice. 
(Scale bar = 200 μm; Male mice per group, n = 4, unpaired T-test analysis, 
n.s., not significant). Fig. S5 Expression of myelination regulated genes in 
Tmem108 mutant mice. A. Myelination regulated gene expression in the 
CC. B. Myelination regulated gene expression in the cerebral cortex. A. 
Myelination regulated gene expression in the striatum. D. Venn diagram 
of myelination regulated gene expression from CC, cerebral cortex, and 
striatum in Tmem108 mutant mice. (Gapdh was used as an internal con-
trol, and gene expression in wild-type mice was defined as 1; Male adult 
mice per group n = 5; Unpaired T-test were made between the groups; * 
p < 0.05). Table S1. Sequences of qPCR primers.
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