
Hagihara et al. Molecular Brain           (2022) 15:94  
https://doi.org/10.1186/s13041-022-00981-0

RESEARCH

Forebrain-specific conditional calcineurin 
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Abstract 

Calcineurin (Cn), a phosphatase important for synaptic plasticity and neuronal development, has been implicated in 
the etiology and pathophysiology of neuropsychiatric disorders, including schizophrenia, intellectual disability, autism 
spectrum disorders, epilepsy, and Alzheimer’s disease. Forebrain-specific conditional Cn knockout mice have been 
known to exhibit multiple behavioral phenotypes related to these disorders. In this study, we investigated whether 
Cn mutant mice show pseudo-immaturity of the dentate gyrus (iDG) in the hippocampus, which we have proposed 
as an endophenotype shared by these disorders. Expression of calbindin and GluA1, typical markers for mature DG 
granule cells (GCs), was decreased and that of doublecortin, calretinin, phospho-CREB, and dopamine D1 receptor 
(Drd1), markers for immature GC, was increased in Cn mutants. Phosphorylation of cAMP-dependent protein kinase 
(PKA) substrates (GluA1, ERK2, DARPP-32, PDE4) was increased and showed higher sensitivity to SKF81297, a Drd1-
like agonist, in Cn mutants than in controls. While cAMP/PKA signaling is increased in the iDG of Cn mutants, chronic 
treatment with rolipram, a selective PDE4 inhibitor that increases intracellular cAMP, ameliorated the iDG phenotype 
significantly and nesting behavior deficits with nominal significance. Chronic rolipram administration also decreased 
the phosphorylation of CREB, but not the other four PKA substrates examined, in Cn mutants. These results suggest 
that Cn deficiency induces pseudo-immaturity of GCs and that cAMP signaling increases to compensate for this 
maturation abnormality. This study further supports the idea that iDG is an endophenotype shared by certain neu-
ropsychiatric disorders.
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Introduction
Endophenotype-oriented neuropsychiatric research has 
been increasingly considered important to improve the 
validity, reliability, and translatability of studies from ani-
mal models to human disease [1]. Accumulating evidence 
has indicated that pseudo-immaturity of the hippocampal 
dentate gyrus (DG) is found in a variety of animal models 

that exhibit behavioral abnormalities related to schizo-
phrenia, intellectual disability (ID), autism spectrum 
disorders (ASD), epilepsy, and Alzheimer’s disease (AD) 
[2–13]. In the immature DG (iDG) phenotype, molecu-
lar expression patterns in the DG of adult mice resem-
ble those of typically developing infants or adolescents 
with reduced mature marker (e.g., calbindin, glutamate 
receptor 1 [GluA1]) and increased immature marker 
(e.g., calretinin, doublecortin) expression. Importantly, 
pseudo-immaturity phenomena in the DG and other 
brain regions have been identified in human patients 
with schizophrenia, ASD, epilepsy, and AD, as assessed 
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by decreased calbindin expression and/or increased cal-
retinin expression and genome-wide gene expression 
patterns in post-mortem brain tissues [14–20], suggest-
ing that pseudo-immaturity of particular brain regions is 
a phenomenon that can be observed across species. We 
have proposed iDG as a brain endophenotype shared by 
certain types of neuropsychiatric disorders [21].

Calcineurin (Cn) is a heterodimeric calcium/calmo-
dulin-dependent serine/threonine protein phosphatase 
comprising Cnb regulatory and Cna catalytic subunits 
[22]. Cnb1, an isoform of Cnb, is the only regulatory sub-
unit expressed in the brain, while several different Cna 
isoforms are expressed in the brain [22], with a particu-
lar abundance in the hippocampus, cortex, and striatum 
[23, 24]. Cn is known to be involved in a wide range of 
neuronal functions and development, such as N-methyl-
D-aspartate (NMDA) receptor-dependent long-term 
depression in hippocampal CA1 neurons [25, 26], den-
dritic spine size dynamics in cortical neurons [26, 27], 
and axonal outgrowth in some types of embryonic neu-
rons [29, 30]. Genetic studies have suggested an asso-
ciation between the genes encoding CNA isoforms and 
schizophrenia [31–34]. Recently, de novo mutations in 
PPP3CA, a gene encoding a CNA isoform, have been 
repeatedly reported as a cause of ID /developmental 
delay and epilepsy, which are often accompanied by 
autistic features [35–40]. More recent large-scale associa-
tion studies have identified a number of genes that have 
common and rare variants associated with schizophrenia 
[41–43] and showed a nominal association for rare vari-
ants in PPP3CA with no genome-wide significance [41]. 
RNA sequencing analysis has revealed that expression of 
CNB1 (PPP3R1) is reduced in the cortex of patients with 
ASD [44]. Mutant mice with forebrain neuron-specific 
deletion of Cnb1 (Cn mutants) exhibited multiple behav-
ioral abnormalities related to schizophrenia and other 
neuropsychiatric disorders, including hyper-locomotor 
activity (mania-like behavior), reduced nest-building 
activity (a mimic of negative-like symptoms [45]), and 
working memory deficits [24, 46], supporting the idea 
that alterations in CN signaling or in mechanism(s) sup-
ported by CN functions may be an important contrib-
uting factor in the pathogenesis of these diseases [46]. 
However, it remains unknown whether Cn deficiency 
causes neuronal pseudo-immaturity in the DG, and if 
so, what behaviors are associated with such an imma-
ture phenotype. In addition, it is unknown whether Cn 
mutants exhibit increased expression of Drd1, a shared 
feature among mouse models with the iDG phenotype 
[21], such as  Camk2a± mice and the mice chronically 
treated with the antidepressant fluoxetine [47, 48]. An 
increase in DRD1 expression has been observed in some 
cortical regions of patients with schizophrenia [49–51]. 

The current study addresses these questions using molec-
ular expression pattern analyses, phosphorylation assays 
of Drd1 signaling substrates, and behavioral tests in com-
bination with pharmacological manipulation to rescue 
the observed multi-level phenotypes in Cn mutant mice.

Methods
A detailed description of the Materials and Methods is 
provided in the Additional file 1: Supplementary Materi-
als and Methods.

Animals
All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of Fujita Health 
University and Kurume University based on the Law for 
the Humane Treatment and Management of Animals and 
the Standards Relating to the Care and Management of 
Laboratory Animals and Relief of Pain. Every effort was 
made to minimize the number of animals used. The fore-
brain-specific Cnb deficient mice were generated by mat-
ing a male mouse homozygous for floxed Cnb  (Cnbflox/

flox) [52] with a female  Cnbflox/wild mouse carrying the 
calcium/calmodulin-dependent protein kinase II alpha-
Cre transgene (Camk2a-Cre±) [53]. CNB floxed mice and 
Camk2a-Cre mice were backcrossed to C57BL6/J mice 
for at least seven and ten generations, respectively, before 
experimental intercrosses. The resulting genotypes were 
Camk2a-Cre−/−,  Cnbflox/wild; Camk2a-Cre±,  Cnbflox/wild; 
Camk2a-Cre−/−,  Cnbflox/flox; and Camk2a-Cre±,  Cnbflox/

flox. We confirmed that the first three genotypes showed 
no significant difference in expression of mature/imma-
ture granule cell markers (Additional file  1: Fig. S1). 
Therefore, Camk2a-Cre−/−,  Cnbflox/wild mice, Camk2a-
Cre±,  Cnbflox/wild mice, or Camk2a-Cre−/−,  Cnbflox/

flox mice were used for the littermate control group and 
Camk2a-Cre±,  Cnbflox/flox mice were used for the Cnb 
deficient group. We used male and female adult mice 
(> 8 weeks old) in this study.

Immunohistochemistry
Immunohistochemical analysis was performed as previ-
ously described [54, 55]. Primary antibodies used in this 
study are listed in Additional file 2: Table S1. Immunore-
activity to the antigen was visualized using Alexa Fluor 
488-conjugated secondary antibody (Molecular Probes, 
Eugene, OR). Nuclear staining was performed with Hoe-
chst 33,258 (Polysciences, Warrington, PA). We used a 
microscope (LSM 510 META; Zeiss, Göttingen, Ger-
many) to obtain images of the stained sections. Three 
to seven sections from each animal were processed for 
semi-quantification analyses, and the averaged values 
were considered as one sample. Immunofluorescence 
intensity and the number of stained cells were counted in 
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the indicated hippocampal regions, manually delineated 
using ZEN software (Zeiss) or ImageJ software (http:// 
rsb. info. nih. gov/ ij/) according to the mouse brain atlas 
[56]. Semi-quantification analyses were performed in 
the dorsal hippocampus (approximately from −  2.1 to 
− 1.6 mm from the bregma).

Real‑time quantitative PCR
We used 11-week-old mice for the analysis [57]. The 
following primers were used: dopamine d1 receptor 
(Drd1a) (1–124), 5′-ATG GCT CCT AAC ACT TCT ACCA 
and 5′-GGG TAT TCC CTA AGA GAG TGGAC; trypto-
phan 2,3-dioxygenase (Tdo2) (1–105), 5′-ATG AGT GGG 
TGC CCG TTT G and 5′-GGC TCT GTT TAC ACC AGT 
TTGAG; desmoplakin (Dsp) (7–113), 5′-GCT GAA GAA 
CAC TCT AGC CCA and 5′-ACT GCT GTT TCC TCT 
GAG ACA; and β-actin (851–962), 5′-AGT GTG ACG 
TTG ACA TCC GTA and 5′-GCC AGA GCA GTA ATC 
TCC TTCT. Ct values used were the means of two or 
three replicates (Additional file 2: Table S2).

DNA microarray and data processing
Dissection of the mouse DG [57] and microarray experi-
ments were performed as described previously [54]. Thir-
teen to 14 weeks old Cn mutant and control mice were 
used. The raw microarray data were deposited in the GEO 
database under accession number GSE175896, and the 
processed data is available in Additional file 2: Table S3. 
The following microarray datasets were also used: the 
DG of postnatally developing mice (GSE113727) [17, 58], 
the DG of  Camk2a± mice [57], the DG of Hivep2 (also 
called Schnurri-2) knockout (KO) mice (GSE42777) [3], 
and the DG of mice chronically treated with an antipsy-
chotics fluoxetine (GSE118669) [58].

Using the expression values, we calculated fold changes 
and t-test P-values between experimental mice and the 
corresponding control mice. The average value of 8, 11, 
14, 17, 21, and 25  days old mice was divided by that of 
29  days old mice, respectively. Genes (or transcripts) 
with absolute fold change > 1.2 and P‐value < 0.05 (with-
out correction for multiple testing) were imported to the 
web‐based bioinformatics tool BaseSpace (Illumina, San 
Diego, CA; https:// bases pace. illum ina. com) [59] accord-
ing to the manufacturer’s instructions. Subsequently, the 
gene expression patterns of the two given gene sets were 
statistically compared using BaseSpace [17, 60, 61]. Using 
the bioinformatics tool, similarities were examined using 
the Running Fisher algorithm, a nonparametric rank‐
based statistical method, in which information regard-
ing the rank based on the absolute value of fold change 
and the direction of gene expression changes within each 
gene set was considered [59]. The greater the similarity in 
gene expression patterns between the two conditions, the 

lower the resulting overlap P‐value. Details of the algo-
rithm have been described previously [3].

Pathway enrichment analysis
Pathways/biogroups enriched in the differentially 
expressed genes (DEGs) were determined through a 
combination of rank‐based enrichment statistics and 
biomedical ontologies using BaseSpace [59]. Pathways/
biogroups from GO and canonical pathways of Broad 
MSigDB were included in this analysis.

Drug treatment
Eight-week-old mice were administered with 2 mg/kg of 
rolipram (R6520; Sigma-Aldrich, St Louis, MO) or vehi-
cle (1% dimethyl sulfoxide in saline) intraperitoneally 
once daily at a volume of 5  ml/kg for 3  weeks. On the 
next day of the final treatment, mice were processed for 
immunohistochemical analyses, slice experiments, and 
behavioral tests. Mice for behavioral testing were kept 
treated with rolipram, which was administered at the end 
of the experiments every day, during behavioral testing.

Slice experiments
Preparation of DG slices and immunoblotting were per-
formed as described previously [48]. Briefly, the regions 
of DG were dissected from 350-μm-thick coronal slices 
between − 1.4 and − 3.8 mm from the bregma. The DG 
slices were incubated with or without SKF81297 (Sigma-
Aldrich) for 10  min and processed for immunoblotting 
analysis. Eight mice were analyzed for each condition. 
Primary antibodies used in this study are listed in Addi-
tional file 2: Table S1.

Behavioral tests
The open field test, T-maze test, startle response/pre-
pulse inhibition (PPI) test, and nest building test was per-
formed as described previously [3, 46, 62–64].

Statistical analysis
The data were analyzed by Student’s t-test, one-way 
ANOVA, or two-way ANOVA followed by Sidak’s mul-
tiple comparison test using R or Prism 8 version 8.4.2 
(GraphPad Software, Inc., San Diego, CA). We used the 
nonparametric tests (Mann Whitney test and Friedman 
test) when the homogeneity of variance and normality 
assumptions were not met. In the behavioral test battery, 
we defined “study-wide significance” as the statistical sig-
nificance that survived false discovery rate (FDR) correc-
tion for 14 indices in the comparison between Mut + Rol 
and Mut + Veh groups and “nominal significance” as the 
one that achieved a statistical significance in an index 
(P < 0.05) but did not survive this correction.

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
https://basespace.illumina.com
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Results
Cn deficiency induces immature dentate gyrus phenotype 
as assessed by typical neuronal maturation markers
We first examined the expression patterns of typi-
cal markers of mature and immature GCs in the DG. 
The immunoreactive intensity of calbindin, a mature 
GC marker, was drastically decreased in the GC layer 
of Cn mutants (Fig.  1a). The number of calbindin-
positive cells was also decreased in the GC layer of 
Cn mutants (Con, 4078.8 ± 172.6 cells/mm2; Mut, 
1285.2 ± 341.0 cells/mm2; P < 0.0001). Immunoreactive 
intensity of GluA1 and GluA2, other markers of mature 
GC [65], was decreased in the GC layer (Fig. 1b and c) 
and molecular layer (Additional file  1: Fig. S2) of Cn 
mutants, indicating the reduced expression of GluA1 
and GluA2 in both soma and dendrites of GC. The 
number of Hoechst-stained nuclei in the GC layer was 
not significantly different between genotypes (mutants: 
112.64 ± 3.59 cells/mm2, controls: 113.43 ± 5.10 cells/
mm2; P = 0.90), indicating that the decreased expres-
sion of those mature GC markers in Cn mutants was 
not due to the loss of GCs. Expression levels of mRNA 
for other mature GC markers, Dsp and Tdo2 [66], 
were also significantly lower in the DG of Cn mutants 
(Fig.  1i). In contrast, the expression of doublecortin 
(Fig. 1d), PSA-NCAM (Fig. 1e), and calretinin (Fig. 1f ), 
markers for progenitors or immature GCs, was higher 
in the Cn mutants. Doublecortin-positive cells were 
observed within the GC layer in Cn mutants, whereas 
in controls, such cells were mostly located in the sub-
granular zone, where GCs proliferate and differenti-
ate into new neurons (Fig. 3d). We also found that the 
expression of phospho-cAMP-dependent response 
element binding protein (CREB), which is predomi-
nantly expressed in immature GCs and located in the 
inner GC layer in the normal adult DG [67–69], was 
increased throughout the GC layer in Cn mutants 
(Fig.  1g), while the expression levels of total CREB 
were almost normal (Fig.  1h). Western blot analy-
sis confirmed increased CREB phosphorylation in the 
DG of Cn mutants (Fig.  1i, Additional file  1: Fig. S3). 

We also found that the expression of Drd1a mRNA was 
increased in the DG of Cn mutants compared to that in 
controls (Fig. 1j).

An additional feature common to iDG mouse models 
is the activation of astrocytes in the DG [21]. Studies in 
human post-mortem brains have suggested activation 
of astrocytes in the brain of patients with neuropsychi-
atric disorders, including ASD [70, 71], ID [72], epilepsy 
[73, 74], schizophrenia [75, 76], and AD [77], which are 
considered inflammatory conditions of the brain [75]. 
In Cn mutants, the expression of glial fibrillary acidic 
protein (GFAP), an astrocytic marker, increased signifi-
cantly in the molecular layer of the DG, while the num-
ber of GFAP-positive cells was not different from that 
in controls (Fig.  2a). Moreover, the expression of S100 
calcineurin binding protein B (S100B), another marker 
of astrocytes, was increased significantly in the molecu-
lar layer of the DG, while the number of S100B-positive 
cells was not different from that in controls (Additional 
file  1: Fig. S4). We found that neither expression of the 
microglial marker Iba1 nor the number of Iba1-positive 
cells was changed in Cn mutants (Fig. 2b). These results 
suggest astrogliosis with no apparent microgliosis in the 
DG of Cn mutants. Thus, Cn mutants showed the iDG 
phenotype as assessed by typical marker expressions that 
were common to previously identified mouse models 
with iDG [21].

Transcriptomic evidence for the immaturity of the DG in Cn 
mutant mice
Next, we evaluated the iDG phenotype in Cn mutants at 
a genome-wide gene expression level. Microarray analysis 
revealed that of 45,037 transcripts tested, 353 were dif-
ferentially expressed in the DG of Cn mutants compared 
to controls (absolute fold change > 1.2, P < 0.05, without 
correction for multiple tests; Fig.  3a). Cnb1 (Ppp3r1) 
displayed the lowest value among the differentially 
expressed genes (DEGs) (Additional file  2: Table  S3). 
Pathway analysis showed that terms related to cell pro-
liferation and development were enriched in the DEGs 

Fig. 1 Immature dentate gyrus phenotype assessed using typical molecular markers in Cn mutant mice. a–h Immunostaining images and 
quantified bar graphs of calbindin (a; t = 11.20, df = 22, P < 0.0001), GluA1 (b; t = 16.66, df = 22, P < 0.0001), GluA2 (c; t = 10.00, df = 4, P = 0.0006), 
doublecortin (d; left graph: t = 4.39, df = 4, P = 0.012; right graph: t = 11.66, df = 826, P < 0.0001), PSA-NCAM (e; F test: P < 0.0001; Mann Whitney 
test: P < 0.0001), calretinin (f; t = 11.23, df = 22, P < 0.0001), phospho-CREB (g; F test: P < 0.0001; Mann Whitney test: P = 0.0091), and CREB (h; t = 0.24, 
df = 10, P = 0.81). i Western blot images and quantified bar graphs of phospho-CREB and CREB. Graphs show relative levels of phospho-CREB over 
total CREB. P = 0.0085. The original blots are included in Additional file 1: Fig. S3. j Expression levels of Dsp, tdo2, and Drd1a mRNA (Dsp: t = 6.95, 
df = 13, P < 0.0001; Tdo2: t = 10.64, df = 14, P < 0.0001; Drd1a: t = 2.71, df = 13, P = 0.018). Bar graphs show means ± SEM. Each dot represents one 
mouse, except for the right graph in d. The positions of doublecortin-positive cells are shown as relative values between the subgranular layer (0) 
and the border with the molecular layer (1) (d, right graph; each dot represents one cell). Scale bars: a upper panels 500 μm, lower panels 50 μm; b, 
c left panels 500 μm, right panels 100 μm; d, e left panels 300 μm, right panels 50 μm; f left panels 200 μm, right panels 50 μm; g, h 50 μm. Relative 
intensity means the ratio of the immunoreactive intensity obtained from the mutants to that of the controls. *P < 0.05, **P < 0.01, Students t-test. 
Con, control mice; Mut, Cn mutant mice

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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(Fig. 3b; Additional file 2: Table S4), supporting the idea 
of maturation abnormalities in the DG of Cn mutants.

To further define the iDG phenotype in Cn mutants, 
we used publicly available microarray datasets to con-
duct a comparative transcriptomic analysis. This analy-
sis examined whether, or to what extent, overall gene 
expression patterns were similar between adult Cn 
mutants and typically developing infant mice (Fig. 3c). 
Transcriptome datasets were compared using the Run-
ning Fisher test, a non-parametric rank-based statistical 
method, which calculates overlap P-values between two 
given gene sets in consideration of fold-change-based 

rank and the direction of changes [59]. In this analy-
sis, we identified a highly significant overlap P-value 
with a positive correlation between the DG of adult Cn 
mutants (mutants vs. controls) and the DG of infant 
mice (2-week-old vs. 1-month-old) (P = 2.7 ×  10–13; 
Fig.  3d and e, Additional file  2: Table  S5), indicat-
ing a significant similarity in the gene expression pat-
terns between them. Furthermore, the patterns of 
gene expression changes in Cn mutants were similar 
to those in Hivep2 KO mice [3],  Camk2a± mice [2], 
and fluoxetine-treated mice [47, 48], and other mouse 
models with iDG (Fig. 3f ). These results confirmed the 

Fig. 2 Activation of astrocytes in the DG of Cn mutant mice. Immunostaining images and quantified bar graphs of GFAP (a; left graph: t = 3.84, 
df = 10, P = 0.0032; right graph: t = 1.93, df = 10, P = 0.083) and Iba1 (b; left graph t = 2.20, df = 9, P = 0.055; right graph t = 0.33, df = 10, P = 0.75). 
Bar graphs show means ± SEM. Each dot represents one mouse. Scale bars: a left panels 500 μm, right panels 100 μm; b 300 μm. Relative intensity 
means the ratio of the immunoreactive intensity obtained from the mutants to that of the controls. **P < 0.01, Students t-test
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iDG phenotype in Cn mutants from a transcriptomic 
standpoint.

Chronic rolipram treatment ameliorates iDG phenotype 
and nest‑building behavior
Increased expression of Drd1a, which stimulates intra-
cellular cAMP signaling, is a common feature found 
in previously identified mouse models with iDG [20], 
and an increase was also found in Cn mutants (Fig. 1i). 
We also found an increase in CREB phosphoryla-
tion (Fig.  1g and h), which are known to be increased 
by cAMP/protein kinase A (PKA) [78], while CREB is 

suggested to be not a direct target of Cn [79]. These 
results suggest that cAMP signaling is elevated in the 
DG of Cn mutants. We previously found that chronic 
treatment with rolipram, a cAMP-specific phosphodi-
esterase inhibitor that elevates intracellular cAMP lev-
els (in combination with ibuprofen), rescued the iDG 
phenotype in Hivep2 KO mice [3], raising the possibil-
ity that the increased cAMP signaling in Cn mutants 
is due to a compensatory mechanism. To determine 
whether the increased cAMP signaling is related to 
compensatory or pathological mechanisms underlying 
the iDG and behavioral phenotypes, we investigated 
the effect of rolipram on the phenotypes of Cn mutants.

Fig. 3 Transcriptomic evidence for the immature dentate gyrus phenotype in Cn mutant mice. a Volcano plot showing the differentially expressed 
genes (DEGs) identified by microarray analysis. b Pathway enrichment analysis of the DEGs using BaseSpace. Full list is available in the Additional 
file 2: Table S4. c The gene expression pattern in the DG of adult Cn mutant mice (mutants compared to controls) was compared with typically 
developing infant mice (2-week-old vs. 4-week-old wild-type mice). d Venn diagram illustrating the overlap in transcriptome‐wide gene expression 
changes in the DG of adult Cn mutant mice and infant mice. e P‐values of overlap between the adult Cn mutant mice and infant mice in the 
DG datasets. Bar graphs illustrate the P‐values of overlap of genes upregulated (red arrows) or downregulated (blue arrows) by each condition, 
between the two conditions. f Overlap P-values and the number of common genes/transcripts responsive to both conditions for each pair of 
interest. iDG mouse, mouse with immature dentate gyrus (iDG) phenotypes



Page 8 of 15Hagihara et al. Molecular Brain           (2022) 15:94 

The rolipram treatment significantly increased the 
expression levels of the mature GC marker calbindin 
(P = 0.0057; Fig.  4a and b) and decreased the expres-
sion levels of the immature GC marker phospho-CREB 
(P = 0.033; Fig.  4a and c) in Cn mutants. Expression 
levels of GluA1 were not affected by rolipram treat-
ment (Additional file  1: Fig. S5), and the number of 
doublecortin-positive (Fig.  4d) and calretinin-positive 
cells (Fig.  4e) tended to be lower following rolipram 
treatment in Cn mutants. These results suggest that 
chronic treatment with rolipram partially rescued the 
iDG phenotype in Cn mutants. Moreover, chronic 
rolipram treatment decreased the expression of the 
astrocytic marker, GFAP, in mutants (P = 0.010; 
Fig.  4f ), which may be due to the anti-inflammatory 
effects of the drug [80].

A series of behavioral tests revealed that chronic 
rolipram treatment improved the impaired nest-build-
ing activity in Cn mutants at a nominal significance 
level (raw P = 0.025; Fig.  4g). Chronic treatment with 
rolipram did not significantly affect locomotor activity 
or anxiety-like behavior in the open field test (Addi-
tional file 1: Figs. S6a–S6d), prepulse inhibition (Addi-
tional file  1: Figs S6e and S6f ), or working memory 
assessed using the T-maze spontaneous alternation 
task (Additional file 1: Fig. S6g). Thus, rolipram treat-
ment selectively rescued impaired nesting behavior, 
which is considered to be associated with negative 
symptoms of psychiatric disorders [45].

Increased Drd1a/PKA signaling activity in the DG of Cn 
mutant mice
Considering the increased expression of Drd1a in Cn 
mutants and the cAMP-modulating effect of rolipram, 
we investigated cAMP-dependent PKA signaling activity 
downstream of Drd1a to gain mechanistic insights into 
the rescue effects of rolipram. After the 3-week treatment 
of mice with rolipram or vehicle, we prepared DG slices 
and examined the phosphorylation levels of known sub-
strates of PKA (P-Ser845 GluA1, P-Thr34 dopamine-and 
cAMP-regulated phosphoprotein of 32 kDa [DARPP-32], 
and P-Ser133 phosphodiesterase 4 [PDE4]) or a down-
stream substrate of PKA (P-Thr202/Tyr204 extracellular 
signal-regulated kinase 2 [ERK2]) with or without incu-
bation with SKF81297, a Drd1-like agonist.

In the vehicle-treated group (Fig. 4h–k and Additional 
file 1: Fig. S7), the effect of genotype on phosphorylation 
levels of all four substrates for PKA signaling was exam-
ined under both basal and SKF81297-stimulated condi-
tions, suggesting that Drd1a-mediated PKA signaling is 
activated in Cn mutants. Interestingly, in the rolipram-
treated group (Fig.  4l–o), phosphorylation levels of 
P-Ser845 GluA1 and P-Thr202/Tyr204 ERK2 were not 
significantly different between Cn mutants and controls 
(Fig.  4l and m), whereas levels of P-Thr34 DARPP-32 
and P-Ser133 PDE4 remained increased in Cn mutants 
(Fig.  4n and o). In Cn mutants, chronic rolipram treat-
ment shifted P-Ser845 GluA1 and P-Thr202/Tyr204 
ERK2 levels downward, and there was a tendency 
of decrease in P-Ser845 GluA1 levels (P = 0.090 for 
P-Ser845 GluA1 and P = 0.13 for P-Thr202/Tyr204 ERK2) 

(See figure on next page.)
Fig. 4 Rescue of immature dentate gyrus phenotype and impaired nest building behavior by chronic rolipram treatment in Cn mutant mice. a 
Immunostaining images of calbindin (upper panels) and phospho-CREB (lower panels). Scale bars, 200 μm. G, granule cell layer; h, hilus. b–g Bar 
graphs showing the number of calbindin-positive cells (b; Bartlett test: genotype, P = 0.0037, drug, P = 0.11; Friedman test: genotype effect: F(1, 
11) = 33.52, P < 0.0001; drug effect: F(1, 11) = 13.84, P = 0.0034; interaction: F(1, 11) = 9.79, P = 0.0096), the number of phospho-CREB-positive cells 
(c; Bartlett test: genotype, P = 0.016, drug, P = 0.024; Friedman test: genotype effect: F(1, 16) = 45.15, P < 0.0001; drug effect: F(1, 16) = 7.37, P = 0.015; 
interaction: F(1, 16) = 3.59, P = 0.076), the number of doublecortin (Dcx)-positive cells (d; genotype effect: F(1,10) = 6.50, P = 0.029; drug effect: F(1, 
10) = 2.04, P = 0.18; interaction: F(1, 10) = 4.22, P = 0.067), number of calretinin (CR)-positive cells (e; Bartlett test: genotype, P = 0.023, drug, P = 0.13; 
Friedman test: genotype effect: F(1, 10) = 10.81, P = 0.0082; drug effect: F(1, 10) = 6.15, P = 0.033; interaction: F(1, 10) = 5.22, P = 0.046), GFAP 
immunoreactivity (f; Bartlett test: genotype, P = 0.016, drug, P = 0.024; Friedman test: genotype effect: F(1, 11) = 33.52, P = 0.00012; drug effect: 
F(1, 11) = 12.14, P = 0.0051; interaction: F(1, 11) = 10.23, P = 0.0085), and nest-building score (g; genotype effect: F(1,55) = 17.70, P < 0.0001; drug 
effect: F(1, 55) = 4.45, P = 0.040; interaction: F(1, 55) = 3.82, P = 0.056). *P < 0.05, **P < 0.01, two-way ANOVA or Friedman test followed by multiple 
comparison test. Bar graphs show means ± SEM. Each dot represents one mouse. h–o Expression levels of P-Ser845 GluA1 (h, l), P-Thr202/Tyr204 
ERK2 (i, m), P-Thr34 DARPP-32 (j, n), and P-Ser133 PDE4B1 (k, o) in the DG slices from vehicle (Veh)-treated mice (h–k) or rolipram (Rol)-treated 
mice (l–o) with or without preincubation with SKF81297. The data were normalized to total protein and values obtained with untreated slices 
from vehicle-treated control mice. The expression levels of total proteins were not altered significantly between genotypes or in response to 
SKF81297. The original blots are included in Additional file 1: Fig. S7. *P < 0.05, **P < 0.01, two-way ANOVA or Friedman test. h Bartlett test: genotype, 
P = 0.00075, SKF81297, P = 0.013; Friedman test: Genotype effect: F(1, 42) = 15.55, P = 0.00030; effect of SKF81297: F(2, 42) = 26.14, P < 0.0001; 
interaction: F(2, 42) = 0.45, P = 0.64. i Genotype effect: F(1, 42) = 23.11, P < 0.0001; effect of SKF81297: F(2, 42) = 18.57, P < 0.0001; interaction: F(2, 
42) = 0.26, P = 0.77. j Genotype effect: F(1, 42) = 18.35, P = 0.0001; effect of SKF81297: F(2, 42) = 12.94, P < 0.0001; interaction: F(2, 42) = 0.78, P = 0.46. 
k Genotype effect: F(1, 36) = 42.55, P < 0.0001; effect of SKF81297: F(2, 36) = 4.07, P = 0.026; interaction F(2, 36) = 1.87, P = 0.17. l Genotype effect: F(1, 
42) = 0.015, P = 0.90; effect of SKF81297: F(2, 42) = 15.41, P < 0.0001; interaction: F(2, 42) = 0.13, P = 0.88. m Genotype effect: F(1, 42) = 0.14, P = 0.71; 
effect of SKF81297: F(2, 42) = 19.15, P < 0.0001; interaction: F(2, 42) = 0.068, P = 0.93. n Genotype effect: F(1, 42) = 5.09, P = 0.0293; effect of SKF81297 
F(2, 42) = 12.52, P < 0.0001; interaction: F(2, 42) = 0.39, P = 0.68. o Genotype effect: F(1, 36) = 36.62, P < 0.0001; effect of SKF81297: F(2, 36) = 7.04, 
P = 0.0026; interaction: F(2, 36) = 1.34, P = 0.27. Data are shown as means ± SEM
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Fig. 4 (See legend on previous page.)
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(Additional file  1: Fig. S8). In contrast, in control mice, 
P-Ser845 GluA1 and P-Thr202/Tyr204 ERK2 levels were 
shifted upward following chronic rolipram treatment, 
and the effect of rolipram treatment on P-Thr202/Tyr204 
ERK2 levels was significant (P = 0.0070) (Additional file 1: 
Fig. S8). These results indicate that chronic rolipram 
treatment modulates PKA activity downstream of Drd1a 
in a substrate-selective manner with the opposite effect 
between Cn mutant and control mice. When we exam-
ined the dose-dependency curves induced by SKF81297 
application using data normalized to the level of each 
group untreated with SKF81297, a similar increase was 
found in SKF81297-induced phosphorylation between 
genotypes in ERK2, DARPP-32, and PDE4, but not in 
GluA1 (Additional file  1: Fig. S9), suggesting that Drd1 
signaling is partially disturbed in Cn mutant mice.

Discussion
In this study, we found immaturity-related signatures 
in the DG of adult Cn mutant mice, as assessed by the 
expression of typical molecular markers for neuronal 
maturation and genome-wide gene expression patterns. 
Considering that deletion of the Cnb1 gene mediated by 
Cre under the Camk2a promoter was not observed until 
postnatal 5  weeks of age [24], it is likely that the iDG 
phenotype appears thereafter in the Cn mutants. Dur-
ing postnatal mouse development, calbindin expression 
levels in the DG almost reached a plateau at 4 weeks of 
age when it did not change further [81]. Therefore, it is 
likely that Cn deficiency starting after 5  weeks of age 
may reverse the maturity of GCs, designated as dema-
turation [47]. A number of factors, including genetic [3, 
4, 7] and non-genetic factors [5, 47, 82], have been sug-
gested to postnatally induce dematuration of GCs. The 
iDG phenotype in Cn mutants could be another exam-
ple of dematuration of GCs. The presence of a number 
of doublecortin- or calretinin-positive immature GCs in 
the middle and outer parts of the GC layer apart from the 
subgranular zone (a well-known neurogenic region) is 
suggested to be attributed to the dematuration of mature 
GCs rather than to adult neurogenesis [16]. 5-bromo-2′-
deoxyuridine (BrdU) labeling assay indicated that adult 
neurogenesis was slightly but significantly increased in 
the DG of Cn mutants (manuscript in preparation), but 
no obvious changes were found in the number of GCs. 
Therefore, enhanced recruitment of new neurons might 
not be a major contributing factor to the iDG phenotype. 
However, it is unclear how Cn deficiency caused the iDG 
phenotype in mice, including whether it is mediated by a 
cell-autonomous or non-cell-autonomous role of Cn.

We should note the limitations of the present study. 
First, while we showed an increase in Drd1a expression 
in the DG of Cn mutants by qPCR analysis, it has not 

been determined whether the increase appears in GC. 
Spatial analysis of Drd1a expression in combination with 
specific GC markers using in situ hybridization will help 
address this issue. Second, pathway enrichment analysis 
showed that biological processes related to the devel-
opment of particular cells/tissues were predominantly 
overrepresented in the DEGs of Cn mutants, which is in 
accordance with the iDG hypothesis in these mice. How-
ever, limitations of this analysis include the inequality 
in annotation between genes in the database used. We 
queried GO and MsigDB databases via BaseSpace plat-
form. Commonly used databases for pathway analysis, 
including these, are basically created by the curation of 
published experimental data. Hence, the analyses using 
the databases tend to bias toward the already anno-
tated genes in nature, while prior unannotated genes are 
ignored [83, 84]. Such annotation inequality bias of genes 
must be taken into consideration to interpret our results 
of pathway enrichment analysis. Importantly, targeted 
comparisons revealed the high similarities in the gene 
expression pattern of Cn mutants with that of typically 
developing infant mice and other established mice with 
iDG, which confirmed the iDG phenotype in Cn mutants 
in terms of global gene expression analysis, in addition to 
pathway enrichment analysis.

We found that chronic rolipram treatment rescued 
the deficits in nest-building behavior along with the 
iDG phenotype in Cn mutants. Nest-building behavior 
is considered to be a hippocampus-dependent behavior 
[78–80], and its deficits have been observed in multiple 
mouse models of neuropsychiatric disorders, includ-
ing ASD, schizophrenia, and AD [85]. In our previous 
study, we showed that the rescue of the iDG phenotype 
was accompanied by the rescue of nesting behavior defi-
cits in Hivep2 KO mice, a mouse model of schizophrenia 
and ID [3, 86]. These results suggest that the iDG may be 
involved in impaired nest-building behavior. However, 
while we focused on the DG in this study, the effect of 
Cnb1 knockout by Camk2a-Cre appeared in other areas 
of the brain, indicating that functional and morpho-
logical neuronal abnormalities have been found in the 
areas, such as synaptic plasticity deficits as assessed by 
long-term depression [24] and an impaired short-wave 
ripple-associated replay [87] in the CA1 region of the 
hippocampus, impaired synaptic transmission induced 
by high-frequency stimulation and decreased high-fre-
quency oscillatory activity assessed by γ oscillations in 
the prefrontal cortex [88], and the prevention of spine 
shrinkage suggested by a reduction in small spines in the 
prefrontal and visual cortices [27, 28]. In addition, con-
sidering that rolipram highly binds to the neocortex, cer-
ebellum, and hippocampus in rodents [89], rolipram may 
exert its effects in brain areas other than the DG in Cn 



Page 11 of 15Hagihara et al. Molecular Brain           (2022) 15:94  

mutants. The present study did not address the causal 
link between iDG and impaired nesting behavior. There-
fore, we cannot exclude the possibility that impaired 
nesting behavior is associated with brain abnormalities 
other than iDG alone or in combination with iDG. It 
would be of interest to examine whether rolipram treat-
ment rescues the above-mentioned neuronal abnormali-
ties other than iDG.

Under basal conditions, Cn mutants showed increased 
phosphorylation levels of PKA substrates (PDE4, ERK2, 
GluA1, DARPP-32, and CREB). P-Ser845 GluA1 is a 
substrate for Cn [90]. It has also been reported that 
Cn dephosphorylates P-Thr34 DARPP-32 [91], which 
inhibits protein phosphatase-1 (PP1) activity [92]. PP1 
dephosphorylates GluA1 [93] and CREB [94] directly and 
indirectly decreases the phosphorylation of ERK2 [95]. 
Consistent with these observations, we observed that 
phosphorylation levels of DARPP-32, GluA1, ERK2, and 
CREB were increased in Cn mutants. In addition to this 
pathway, increased PKA activity downstream of Drd1 
may facilitate CREB phosphorylation in Cn mutants. 
Phosphorylation of PDE4 at Ser133 increases its activity 
[96], which is thought to be a negative feedback mecha-
nism that maintains intracellular cAMP levels. Increased 
Drd1 signaling and PDE4 phosphorylation may balance 
the production and degradation of cAMP at high levels 
in Cn mutants. However, CREB, DARPP-32, and ERK are 
known to be dephosphorylated by protein phosphatase 
2A (PP2A) [97–99], which can be activated by PKA 
through phosphorylation of the B56δ subunit [100]. Stud-
ies are needed to examine activation/expression of PP2A, 
as well as PP1, to gain further insight into the molecular 
mechanism underlying the increased basal phosphoryla-
tion of these PKA substrates in Cn mutant mice.

The increased Drd1/PKA signaling in Cn mutants rela-
tive to that in controls disappeared after chronic rolipram 
treatment in a PKA substrate-dependent manner. Fur-
thermore, chronic treatment with rolipram ameliorated 
the increased phosphorylation of CREB, a known PKA 
substrate. As rolipram is known to increase intracel-
lular cAMP levels and hence activate PKA activity, our 
data would appear to be paradoxical. These changes are 
not accounted for by changes in Drd1a expression levels, 
since rolipram did not significantly affect its expression 
levels in either Cn mutants or controls. Considering that 
PKA activates PP2A [100], which is capable of directly 
dephosphorylating CREB, chronic rolipram administra-
tion might facilitate this pathway, resulting in decreased 
CREB phosphorylation levels in Cn mutants. Interest-
ingly, previous studies have suggested some compensa-
tory mechanisms for constitutive increases and decreases 
in intracellular cAMP levels by enhancing PDE activity 
[101] and increasing dopamine concentrations [102]. 

Based on our data and those of others, we speculate that 
chronic, sustained upregulation in Drd1a/cAMP/PKA 
signaling in the Cn mutant DG is a compensatory mecha-
nism underlying the iDG and nesting behavior deficits; 
thus, facilitating this pathway chronically with rolipram 
administration might exert beneficial effects, result-
ing in the rescue of the iDG phenotype and impaired 
nest-building behavior. However, the exact molecular 
mechanisms underlying the paradoxical changes in PKA 
activity in response to rolipram in Cn mutants remain 
unclear. Other molecules that regulate cAMP levels and 
PKA activity, such as protein Gs, adenyl cyclase, PKA 
regulatory subunit, protein phosphatase, and PDE fam-
ily members other than PDE4 may be involved in chronic 
rolipram-related changes in the DG.

While currently available antipsychotic medications are 
mainly defined by their ability to ameliorate the positive 
symptoms of schizophrenia, such as delusions and hallu-
cinations, few therapeutic methods have been established 
for the negative symptoms and cognitive dysfunction 
of the disease [103–105]. In this study, we found that 
chronic rolipram treatment rescued the decrease in nest-
building activity in Cn mutants. The effect of the drug 
on the behavior was nominally significant but failed to 
reach study-wide significance; hence, this finding needs 
to be replicated in different cohorts. We previously 
found that rolipram (in combination with ibuprofen) res-
cued the decreased nest building and iDG phenotype in 
Hivep2 KO mice [3]. Therefore, PDE4 could be consid-
ered an important target for the treatment of the pheno-
types. Indeed, a pilot study has reported that rolipram 
treatment exhibited some improvement of symptoms 
observed in patients with schizophrenia; however, its 
clinical use is limited due to side effects, such as nau-
sea and vomiting [102], which may be due to the broad 
action of rolipram on PDE subtypes [106]. The develop-
ment of PDE4 inhibitors without side effects may be a 
potential novel treatment for negative symptoms associ-
ated with neuronal immaturity in the DG in neuropsychi-
atric disorders, including schizophrenia [107]. Note that 
chronic rolipram treatment did not rescue other behav-
ioral abnormalities examined in Cn mutants (e.g., hyper-
locomotor activity, impaired PPI, and working memory 
deficits), suggesting that different molecular bases may 
underlie each behavioral phenotype.

In conclusion, this study adds to the literature indi-
cating that the iDG phenotype can be induced by many 
genetic and non-genetic factors and is a possible endo-
phenotype commonly found in neuropsychiatric disor-
ders, including schizophrenia, ID, ASD, epilepsy, and 
AD [21]. We consider that the iDG in Cn mutants could 
be a phenotypic model linking Drd1a-mediated hyper-
dopaminergic dysregulation and neurodevelopmental 
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abnormalities and may serve as a potential therapeutic 
target, especially for negative symptoms of neuropsy-
chiatric disorders.
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