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REVIEW

Regulation of N-type calcium channels 
by nociceptin receptors and its possible role 
in neurological disorders
Emanuelle Sistherenn Caminski1, Flavia Tasmin Techera Antunes2,3, Ivana Assis Souza2,3, Eliane Dallegrave1 and 
Gerald W. Zamponi2,3*   

Abstract 

Activation of nociceptin opioid peptide receptors (NOP, a.k.a. opioid-like receptor-1, ORL-1) by the ligand nociceptin/
orphanin FQ, leads to G protein-dependent regulation of Cav2.2 (N-type) voltage-gated calcium channels (VGCCs). 
This typically causes a reduction in calcium currents, triggering changes in presynaptic calcium levels and thus neu-
rotransmission. Because of the widespread expression patterns of NOP and VGCCs across multiple brain regions, the 
dorsal horn of the spinal cord, and the dorsal root ganglia, this results in the alteration of numerous neurophysiologi-
cal features. Here we review the regulation of N-type calcium channels by the NOP-nociceptin system in the context 
of neurological conditions such as anxiety, addiction, and pain.
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Structure and physiological roles of N‑type calcium 
channels
Voltage-gated calcium channels (VGCCs) mediate 
calcium influx upon the membrane depolarization, 
regulating many physiological processes, such as neuro-
transmitter release, hormone secretion, muscle contrac-
tion, and gene expression [1]. The dysfunction of these 
channels has been linked to a wide range of pathologi-
cal conditions including pain, epilepsy, migraine, night 
blindness, cardiac arrhythmias, and congenital deaf-
ness among many others [2, 3], making them important 
pharmacological targets [4]. VGCCs have been classi-
fied based on their electrophysiological and pharmaco-
logical profiles. They can be separated into low-voltage 
activated (LVA) calcium channels, which include the 
T-type calcium channels (Cav3.1, Cav3.2, and Cav3.3), 

or high-voltage activated ones (HVA), including N-type 
(Cav2.2), R-type (Cav2.3), P/Q-type (Cav2.1), and L-type 
(Cav1.1, Cav1.2, Cav1.3, and Cav1.4) channels [5, 6]. 
With the exception of Cav1.1 which is skeletal muscle-
specific, these channels are all expressed in the brain, 
but show varying albeit overlapping distributions and 
support specific neurophysiological roles [1]. Cav2 chan-
nels operate predominantly at presynaptic terminals 
where they are responsible for fast synaptic transmis-
sion [7], whereas Cav1.3 and Cav1.4 channels can both 
be expressed at ribbon synapses (where they support fea-
tures such as auditory and visual synaptic transmission 
[8, 9]; with Cav1.2 and Cav1.3 being expressed as well on 
cell bodies and dendrites of many types of central nerv-
ous system neurons [10]. All calcium channels contain a 
pore forming Cavα1 subunit that is obligatory to obtain 
a functional channel and which are comprised of four 
transmembrane domains that are connected by cytoplas-
mic linker regions and flanked by cytoplasmic N- and 
C-terminal regions [1, 5]. HVA channel Cavα1 subunits 
co-assemble with ancillary Cavα2δ and Cavβ subunits in 
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a 1:1:1 stoichiometry [11]. These subunits help promote 
plasma membrane expression and regulate the biophysi-
cal and pharmacological features of the channel [12, 13]. 
The mammalian genome expresses four different types of 
Cavβ and four types of Cavα2δ subunits, with the latter 
being post-translationally cleaved, relinked via a disulfide 
bond, and then attached to the outer leaflet of the plasma 
membrane via a GPI anchor [14, 15]. In contrast, Cavβ 
subunits are cytoplasmic and attach to the Cavα1 subunit 
at the linker between transmembrane domains I and II. 
With additional diversity arising from alternative splicing 
events, the existence of multiple ancillary subunits gives 
rise to a wide range of different calcium channel com-
plexes [16, 17]. The cryo-EM structure of Cav2.2 (and 
other) calcium channels has been solved [18–21] and has 
provided insights into the structural basis of channels 
function and pharmacology.

Cav2.2 calcium channels are expressed predominantly 
at presynaptic nerve terminals where they (along with 
Cav2.1 channels) are critically involved in the release of 
neurotransmitters [22, 23]. Their expression is primarily 
restricted to neurons, with wide distribution in the brain 
as well as in peripheral sensory afferents. Cav2.2 channels 
are potently inhibited by peptide toxins isolated from 
different types of marine fish hunting cone snails such 
as ω-conotoxin MVIIA (Conus magus) and ω-conotoxin 
GVIA (Conus geographus) whose selectivity of action 
on these channels has helped elucidate key roles of 
these channels in neurophysiological processes [24, 25]. 
Intrathecal delivery of such toxins mediates potent anal-
gesic effects [26, 27], consistent with a key role of these 
channels in neurotransmission between sensory afferents 
and neurons in the spinal dorsal horn. Case in point, a 
synthetic version of ω-conotoxin MVIIA (a.k.a. Zicono-
tide or Prialt) is FDA approved for the treatment of 
refractory cancer pain [28]. Additional insights into the 
physiological roles of Cav2.2 channels have been gained 
from genetic models such as knockout mice lacking these 
channels, from small organic inhibitors of Cav2.2 channel 
activity, and from molecules that modulate post-transla-
tional modification of these channels. Mice deficient in 
Cav2.2 show hyposensitivity to different pain modalities 
[29–31], consistent with the data obtained with pharma-
cological inhibition. These mice also show increased vigi-
lance [32], hyper-aggression [33], reduced anxiety levels 
[29], and appear to exhibit a reduction in the symptoms 
of alcohol withdrawal [34]. The latter is also consistent 
with the action of small organic Cav2.2 inhibitors [35–
37]. A link between Cav2.2 channels and reward-seeking 
was highlighted by studies that target the interaction 
of Cav2.2 with collapsin mediator protein 2 (CRMP2) 
which is involved in regulating Cav2.2 channel expres-
sion at the plasma membrane [38, 39]—interfering with 

this regulatory pathway alters reinstatement of cocaine 
seeking [40]. Pharmacological inhibition of Cav2.2 has 
been shown to have anxiolytic effects [41, 42], and this 
may be related to an inhibition of GABAergic synaptic 
transmission in the basolateral amygdala and prefrontal 
cortex [43]. On the other hand, it was shown that alter-
native splicing of exon 37 of Cav2.2 enhances responses 
to aversive stimuli via alteration of glutamatergic signal-
ing [17]. Deletion of Cav2.2 channels either directly, or by 
depletion of its ancillary Cavβ3 subunit has been linked 
to impairment of memory [44, 45]. Finally, delivery of 
the Cav2.2 inhibitor ω-conotoxin GVIA directly into the 
brain has been shown to cause depression-like behavior 
in rodents [46], although it should be noted that depres-
sion is more commonly associated with altered  L-type 
calcium channel activity. Overall, these findings indicate 
that Cav2.2 channels mediate important physiological 
roles and that modulation of the activity of these chan-
nels is expected to have consequences that affect behav-
iors such as anxiety and pain responses.

Modulation of Cav2.2 channels by NOP receptors
Cav2.2 channels are subject to modulation by a wide 
range of G protein coupled receptors (GPCRs) [47]. This 
includes the nociceptin opioid receptor (NOP, previously 
called the opioid receptor-like 1 receptor (ORL-1), which 
was first described by Mollereau et  al. [48] and added 
as a fourth member of the opioid receptor family of µ-, 
κ-, and δ-opioid receptors [49, 50]. However, the NOP 
receptor is not activated by any of the known endog-
enous opioids that act on classical opioid receptors, but 
instead by the endogenous agonist nociceptin/orphanin 
FQ [51, 52]. The crystal structure of the NOP receptor 
reveals a typical 7 transmembrane helix topology with 
an additional short helix contained within the proximal 
C-terminus [53].

Like other G protein-coupled receptors (GPCRs), the 
activation of NOP by nociceptin triggers the exchange of 
GDP for GTP on the Gα subunit, causing its dissociation 
from the Gβγ dimer. The dissociated subunits then pro-
ceed to act on different signaling pathways and effector 
systems. The NOP receptor couples primarily to Gαi/o, 
inhibiting adenylyl cyclase and thus cyclic adenosine 
monophosphate (cAMP) production [54]. In addition, 
activation of NOP receptors activates phospholipase C 
and MAP kinase activity via coupling to Gα14 and Gα16 
[55]. The dissociated Gβγ subunits, in addition to regu-
lating various intracellular signaling cascades, activate G 
protein-coupled inwardly rectifying potassium (GIRK) 
channels [56], and inhibit VGCCs [47], thus reduc-
ing neuronal excitability and neurotransmitter release 
(Fig. 1A).
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Specifically, Gβγ subunits inhibit members of the 
Cav2 calcium channel family (Fig.  1B) by directly 
interacting with the Cavα1 subunit at its cytoplasmic 
N-terminal and domain I-II linker regions [57–59], 
with Cav2.2 channels being inhibited more potently 
than Cav2.1 [60–62]. Direct Gβγ modulation of Cav2.2 
is sensitive to the membrane potential and can be 
reversed by the application of a depolarizing pre-pulse 

or by trains of action potentials—it is therefore referred 
to as voltage-dependent inhibition [63–65]. The extent 
of G protein modulation is also dependent on the Cavβ 
subunit [66–68] and critically dependent on the Gβ iso-
form [61, 69], thus allowing receptors to mediate a wide 
range of inhibitory voltage-dependent processes. Many 
G protein-coupled receptors also cause voltage-inde-
pendent modulation of channel activity, most likely via 

Fig. 1 Key aspects of NOP receptor signalling. A. NOP receptors at synaptic terminals. Activation of NOP by N/OFQ triggers several G protein 
dependent signalling pathways. B. Activation of NOP receptors triggers Gβγ mediated voltage-dependent inhibition of Cav2.2 channels, as well 
as Gα/tyrosine kinase dependent voltage independent modulation. Due to the formation of signalling complexes, prolonged agonist application 
triggers the co-internalization of NOP receptor Cav2.2 channel complexes
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the activation of protein kinases and receptor tyrosine 
kinases (Fig. 1B). This type of inhibition is insensitive to 
membrane depolarizations and has also been observed 
with NOP receptors [70].

Inhibition of Cav2.2 calcium channels by NOP recep-
tors has been described in both neurons and heter-
ologous expression systems [70–77]. In addition to the 
classical G protein inhibition, the C-terminus of the NOP 
receptor physically interacts with the Cav2.2 C-terminus, 
allowing it to control channel density at the plasma mem-
brane through enhanced forward trafficking by possibly 
promoting ER export, and via channel/receptor co-inter-
nalization after prolonged agonist exposure [70, 78, 79] 
(Fig. 1B). This physical interaction also allows for a tonic 
inhibition of Cav2.2 channels by Gβγ in the absence of 
an agonist, presumably due to the receptor’s constitu-
tive activity. Another potential avenue by which the NOP 
can modulate Cav2.2 channels is via heterodimerization 
with other opioid receptor family members. NOPs form 
heterodimer complexes with all of the other three opi-
oid receptors, and the prolonged activation of µ-opioid 
receptors triggers the internalization of Cav2.2 channels, 
but only in the presence of NOP receptors [80].

A number of different ligands of NOP receptors have 
been identified and they  are not considered to be opi-
oids. As already noted above, the archetypal agonist of 
the NOP receptor is nociception—a 17-amino acid pep-
tide that is structurally related to dynorphin A [54]. A 
wide range of synthetic NOP receptor agonists have been 
described (for review, see [81]) and have been exam-
ined in preclinical and clinical studies of anxiety and 
pain. Conversely, a wide range of NOP receptor antago-
nists have been developed and tested in animals and 
human subjects in phase I and II studies for the treat-
ment of cognitive impairment, depression, and addiction 
[81, 82]. This includes LY2940094 (aka BTRX-246040) 
which appears to be effective in the treatment of depres-
sion and well tolerated [83]. Mixed agonists of NOP and 
opioid receptors such as AT-121 and cepranopol have 
also been explored as potential systemically active pain 
therapeutics including in phase III clinical testing [84, 
85]. The NOP receptor is widely distributed in the cen-
tral and peripheral nervous systems [86]. In the brain, 
it is expressed in regions that are involved in the pro-
cessing of pain, learning, memory, food intake, and fear 
[86–88], consistent with the above pharmacological stud-
ies. Given the widespread expression of VGCCs, they are 
co-expressed with these receptors in many areas of the 
brain. Below, we will highlight the role of the NOP-N/
OFQ system in neuro-physiological processes that are 
known to rely on Cav2.2 channels.

NOP receptors as modulators of pain
NOP receptors are expressed in the dorsal and ventral 
horns of the spinal cord which integrate sensory process-
ing [89]. NOP receptor expression is enhanced in the 
spinal cord in rodent models of persistent inflammatory 
and neuropathic pain [90–92] and there is an upregula-
tion of plasma concentrations of nociceptin in chronic 
pain patients [93]. Intrathecal delivery of nociceptin 
mediates analgesia in rodent models of pain [94–97], as 
do non-peptide agonists [98–100]. In non-human pri-
mates, systemic or intrathecal injection of NOP agonists 
causes antinociception [101–105]. These analgesic effects 
are likely mediated by an inhibitory action on presynap-
tic Cav2.2 channels expressed in sensory afferents (note 
that NOP receptors are expressed on both A and C fibers 
[79, 86, 106], along with possible activation of postsyn-
aptic GIRK channels). In addition, NOP receptor activ-
ity has been shown to modulate the excitability of spinal 
interneurons and superficial layer neurons projecting to 
the brain [107–109].

Mice lacking the NOP receptors show normal nocic-
eptive thresholds, only slightly reduced locomotor activ-
ity, and normal immune responses, but compromised 
hearing ability [110]. These mice however also show 
alterations in morphine tolerance. Like NOP recep-
tors, activation of μ-opioid receptors by morphine or 
DAMGO also inhibits Cav2.2 channel activity [111]. 
While NOP receptors are intrinsically resistant to the 
μ-opioid specific agonist morphine, they appear to affect 
morphine tolerance via crosstalk with μ-opioid receptors. 
It was shown that mice lacking NOP receptors exhibit 
resistance to morphine tolerance without alterations in 
the acute effects of morphine [112, 113], whereas mice 
with morphine tolerance exhibit upregulation of NOP 
receptors [113]. Along these lines, NOP receptor activa-
tion diminishes the development of morphine tolerance 
in rats and blocks morphine-induced place preference 
[114, 115], although this concept has been challenged 
[116]. Other studies have reported an antagonistic effect 
of NOP receptor activation on opioid-induced analge-
sia [117, 118]. In addition, increased NOP expression is 
seen after prolonged morphine exposure [113, 119, 120]. 
Finally, bi-functional ligands of NOP and μ-opioid recep-
tors help prevent adverse effects associated with μ-opioid 
receptor activation [121–123]. To what extent this cross-
talk is mediated by selective actions via Cav2.2 calcium 
channels remains to be determined, but the notion that 
μ-opioid receptors, NOP receptors, and Cav2.2 channels 
can form signaling complexes [80] hints at the possibil-
ity that converging signaling by these two receptors on 
Cav2.2 as a common target may play a role.

While NOP receptors mediate antinociceptive actions 
at the spinal level likely by inhibition of spinal excitatory 



Page 5 of 13Caminski et al. Molecular Brain           (2022) 15:95  

neurons and synaptic transmission at peripheral afferent 
terminals [124], they appear to exhibit pronociceptive 
effects at the supraspinal level, as observed after injec-
tion of nociceptin into the brain [51, 52]. It is not entirely 
clear how these pronociceptive effects occur at the cellu-
lar and molecular level. One possibility may be an inhibi-
tory effect on stress-induced analgesia that is known to 
be modulated by NOP receptors [125–127]. Indeed, 
there is evidence that NOP receptor activation contrib-
utes to the occurrence of allodynia and hyperalgesia in 
post-traumatic stress disorders (PTSD) [128], with NOP 
antagonists reversing this type of pain behavior [129]. It 
has been suggested that at supraspinal sites, the activa-
tion of NOP receptors may inhibit neuronal activity via 
activation of GIRK channels in brain loci that are relevant 
for nociceptive transmission such as the periaqueductal 
gray region and dorsal raphe nucleus [124], but exactly 
how this modulation causes pro-nociceptive effects 
remains to be worked out.

Role of NOP receptors in anxiety
Anxiety is marked by excessive fear (and avoidance) in 
response to perceived threatening situations and even 
in the absence of true danger [130]. NOP receptors are 
highly expressed in neurons and synaptic terminals of 
brain areas that are implicated in anxiety and depres-
sion [131]. This includes the amygdala, the nucleus 
accumbens (NAc), the hippocampus, the hypothala-
mus, the periaqueductal gray, the ventral tegmental area 
(VTA), and some of the prefrontal regions among others 
[132–134]. The medial prefrontal cortex (mPFC) exerts 
inhibitory control over amygdala activity, preventing an 
improper expression of emotion, but in anxiety disor-
ders, this control becomes imperfect and consequently 
triggers aberrant amygdala activation through dysfunc-
tion of GABAergic and glutamatergic transmission [135–
138]. NOP activation produces presynaptic inhibition of 
VGCCs, and thus the release of glutamate in the lateral 
amygdala [139, 140]. NOP agonists delivered orally or via 
intraperitoneal injections have revealed anxiolytic effects 
in rodents [141–144]. Little is known about the biochem-
ical pathways by which NOP agonists induce anxiolytic 
effects but they  may involve serotonin availability and 
changes in firing rates in the dorsal raphe nucleus (DRN, 
which projects to serotonergic axons of the amygdala), 
and concomitantly, by counteracting anxiogenic CRF 
actions into the bed nucleus of stria terminalis [145]. 
It should be noted that some studies have, however, 
reported anxiogenic responses to nociceptin, and the 
reason for these discordant findings is unclear [146, 147].

Prenatal ethanol exposure (PEE) induces an anxiety-like 
phenotype in adult and adolescent rats [148], and this is 
frequently used as an animal model to study anxiety. This 

results in the induction of neuronal hyper-excitability 
by augmenting glutamatergic transmission, which does 
not appear to be attenuated by GABAergic inhibition in 
the basolateral amygdala [149, 150]. NOP activation via 
intracerebroventricular administration of nociceptin 
reportedly inhibits associated anxiety behaviors [151]. In 
this model, there is an alteration of dopaminergic neuron 
morphology [152], along with a reduction of NOP gene 
expression [153], and an increase in the expression of the 
precursor of nociceptin (ppN/OFQ) [151]. Although the 
authors did not find any alterations of the NOP-nocice-
ptin pathway in the amygdala, alterations of upstream 
inputs may lead to altered amygdala activity, thus per-
haps contributing to the anxiety phenotype.

Altogether, anxiolytic-like effects can be observed with 
the delivery of nociceptin and synthetic agonists into the 
brain. Cav2.2 channels are also known to play a role in 
anxiety and are a potential pharmacological target for 
anxiolytics [41, 154, 155]. Indeed, as noted earlier, inhibi-
tion or depletion of Cav2.2 channels has been shown to 
mediate anxiolytic effects in mice [29, 156], and there-
fore a putative inhibition of these channels by activation 
of NOP would be expected to result in similar outcomes. 
It is however unclear precisely in which brain structures 
and neuronal subtypes of NOP receptor regulation of 
Cav2.2 channels may take place in the context of anxiety.

NOP receptors and stress
The fear/anxiety neuro-circuitry overlaps with the neuro-
circuitry that regulates stress responses [130]. The amyg-
dala integrates information from cortical and thalamic 
sensory inputs, to generate fear and anxiety-related 
behavioral outputs [157], with fear conditioning mod-
els demonstrating an increase in synaptic strength in 
the lateral amygdala (LA) and the PFC [158–160]. PTSD 
involves an over-reactivity of the HPA axis, decreased 
inhibitory signaling by GABA, and increased excitatory 
neurotransmission. This is associated with increased 
activity in emotion-processing brain regions, such as the 
limbic system (hippocampus, amygdala, PFC). Overall, 
a major characteristic of PTSD is impaired fear extinc-
tion, following exposure to a traumatic event [161]. These 
responses against chronic stress lead to altered NOP 
receptor signaling which may contribute to an increase in 
corticosterone levels [145]. In PTSD experimental mod-
els, corticosterone levels, as well as nociceptin and NOP 
expression are increased in different brain regions and 
the cerebrospinal fluid, and consequently, NOP antago-
nists protect against molecular and behavioral deficits 
[162, 163]. Much of the underlying mechanisms appear 
to involve alterations in L-type calcium channel activ-
ity [156, 164–170]. However, given that Cav2.2 channels 
are present at synaptic junctions in the HPA axis, and are 
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typically inhibited by NOP receptor agonists, it is pos-
sible that these channels play a detrimental role in fear 
extinction during PTSD, in addition to their potential 
pronociceptive effects that were discussed earlier. On the 
other hand, it is interesting to note that compounds such 
as topiramate which block R-type and N-type channels 
appear to show some promise in treating PTSD [171]. 
Clearly, more work is needed to elucidate the potential 
role of Cav2.2 channels in PTSD and its modulation by 
the NOP receptors.

NOP receptors as targets for addiction
Dopamine participates in drug-seeking reward behavior 
by modulating the activity of the mesolimbic pathway 
[172]. The dopaminergic axons in the ventral tegmental 
area (VTA) project to downstream regions such as the 
nucleus accumbens, the nucleus of the stria terminalis, 
and the lateral hypothalamus [173]. Nociceptin and NOP 
receptors are densely expressed in the VTA where they 
regulate dopaminergic transmission [174, 175]. This 
occurs by disinhibition of GABAergic control over dopa-
minergic neurons, such that NOP agonists mediate sup-
pression of dopamine release [115, 176, 177]. Genetic 
deletion or pharmacological inhibition of NOP receptors 
in rats was shown to inhibit nicotine-motivated behav-
iors [178]. Along these lines, alcohol reward-seeking 
behavior was shown to be inhibited upon NOP receptor 
antagonism or deletion [179–184]. This fits with obser-
vations that nociceptin and NOP receptor expression are 
aberrantly increased in many brain regions of Marchigian 
Sardinian alcohol-preferring rats, including the central 
amygdala [185]. However, as with the role of NOP recep-
tors in anxiety, there are also several studies that show 
that NOP agonists may in fact inhibit reward-seeking 
behavior related to alcohol and cocaine [186–188]. The 
reason for this discrepancy is not entirely clear, and a 
recent review article suggested the possibility of some 
NOP agonists acting as functional antagonists [163]. 
This then makes it difficult to predict how NOP recep-
tors modulate the reward circuitry by putative actions on 
calcium channels.

L-type channels have been extensively implicated 
in reward-seeking behavior and are known to be dys-
regulated during states of addiction [155, 189–192]. 
But there is also evidence that N-type calcium channels 
play a role, as Cav2.2 knockout mice exhibit reduced 
ethanol consumption [34]. Along these lines, the mixed 
N-type/T-type calcium channel inhibitor NP078585 
reduced alcohol-induced intoxication and reinstatement, 
but failed to do so in mice lacking Cav2.2. This indicates 
that its primary target was indeed the N-type channel 
[35] and altogether suggests that the Cav2.2 channel is 
a potential target for the treatment of alcoholism [36]. 

While an inhibitory action of NOP agonists on Cav2.2 
channels would be consistent with some of the results 
discussed above, the fact that NOP antagonists can also 
attenuate reward-seeking behavior suggests that Cav2.2 
channels are not the exclusive effector of NOP receptors 
in the context of addiction.

Role of NOP receptors in other neuropsychiatric conditions
Khan et  al. [193] suggested a potential role of the NOP 
system in schizophrenia. Some indications that support 
this concept are derived from experiments involving a 
resident-intruder test—an animal model of aggression 
that is thought to reflect certain symptoms of bipolar dis-
order, schizophrenia, or PTSD. In this model, systemic 
injection of NOP antagonists had little effect, but the 
aggressive behavior of mice that were treated with NOP 
agonists was greatly increased [194]. The observed effects 
were similar to those seen with those of para-chloro-
phenylalanine, an inhibitor of serotonin synthesis [194]. 
An equivalent increase in aggressive behavior was seen 
in Cav2.2 null mice, or upon microinjection of a Cav2.2 
channel inhibitor into the dorsal raphe nucleus of wild-
type mice [33]. Hence, it is tempting to speculate that the 
aggressive behavior observed with NOP receptor ago-
nists may have involved the inhibition of Cav2.2 chan-
nels. This might fit with the idea that Cav2.2 null mice 
also presented with an increase in serotonin levels in the 
hypothalamus. It is important to note that a recent study 
has shown that P/Q-type calcium channels may also play 
a role in aggressive behavior [195]—a Cav2 channel sub-
type that is also inhibited by NOP receptors.

Modeling bipolar-like behavior through the adminis-
tration of psychostimulants affects several neurotrans-
mitter systems, and thus it is difficult to attribute precise 
cellular and molecular mechanisms that underlie the 
resultant behavioral phenotype [196]. In mouse mod-
els of methylphenidate-induced manic-like behavior, the 
synthetic full NOP agonist Ro 65-6570 attenuated drug-
induced hyperlocomotion, but did not affect spontaneous 
locomotor activity, whereas NOP receptor antagonists 
had no effect [197]. Interestingly, methylphenidate medi-
ated similar effects in WT and NOP receptor null mice, 
indicating that the establishment of the hyperlocomo-
tion does not per se involve a dysregulation of the NOP 
receptor system [197]. It has been shown that N-type and 
P/Q-type channel inhibitors prevent methylphenidate-
induced locomotion [198, 199], potentially by inhibiting 
dopamine release. This is thus consistent with a mecha-
nism by which NOP receptor activation mediates stim-
ulant-induced hyperlocomotion by inhibition of Cav2.2 
channels.
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NOP receptor function in movement disorders
Central vestibular neurons are important for process-
ing motion-related multisensory signals and their 
transformation into motor commands [200]. Partici-
pation of NOP receptors and nociceptin in vestibu-
lar afferent excitability has been demonstrated via the 
locomotor performance of rats after traumatic head 
injury. Such rats exhibit motor deficits and increased 
levels of nociceptin in the afferent vestibular nuclei, as 
well as an increase in NOP receptor expression in brain 
regions that are associated with the vestibular function 
[201, 202]. The behavioral and functional deficits that 
occur following a traumatic brain injury also correlate 
with the elevated NOP expression in brain regions that 
are associated with vestibular function, including the 
motor cortex, the dorsal striatum, and the vestibular 
nuclei [76]. In cultured rat vestibular afferent neurons, 
nociceptin inhibits HVA calcium currents (principally, 
those carried by Cav2.2), without modifying LVA chan-
nels, and this inhibitory action occurs via voltage-
dependent Gβγ modulation [76]. This fits with the idea 
that blockers of Cav2.2 channels are neuroprotective 
during traumatic brain injury [203].

In Parkinson’s disease, the degeneration of the dopa-
minergic neurons of the substantia nigra (SN) pars 
compacta affects the entire basal ganglia network 

[204, 205], leading to hyperactivity that is sustained by 
enhanced glutamatergic inputs [206, 207]. In addition 
to the basal ganglia, dopamine depletion in the cortical 
and subcortical motor areas results in the upregulation 
of the nociceptin-NOP system in the SN, and a down-
regulation in the striatum, and this may contribute to 
associated motor dysfunction [208, 209]. 6-hydroxy-
dopamine (6-OHDA) hemilesioned rats exhibit an ele-
vated expression and release of nociceptin into the SN 
[210] thereby causing motor deficits. There are conflict-
ing results from pharmacological studies in Parkinson’s 
disease models. On one hand, exogenous nociceptin or 
synthetic NOP agonists, when administered systemi-
cally, attenuated dyskinesias [211, 212]. However, there 
was a biphasic effect on motor function, where low 
doses improved Parkinson-like symptoms, and higher 
doses disrupted motor coordination and global behav-
ior [212]. Conversely, NOP antagonists also produced 
antiparkinsonian effects [213, 214] by ameliorating aki-
nesia, bradykinesia, and overall gait problems at low 
doses, but they inhibited motor activity at intermedi-
ate concentrations. Interestingly, these different doses 
differentially regulated glutamatergic and GABAergic 
signaling in the SN and the ventromedial thalamus 
[215]. While the precise contributions of VGCCs to this 
NOP-dependent regulation of excitatory and inhibitory 
neurons remain to be determined, there is evidence 

Fig. 2 Graphical overview of key physiological roles of NOP receptors vis a vis a putative action on Cav2.2 channels
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that 6-OHDA mediates a PKA-dependent upregulation 
of Cav2.2 channels in the SN [216]. Hence, a putative 
inhibition of Cav2.2 channels would be consistent with 
a protective effect of NOP agonists.

Conclusion
The nociceptin-NOP pathway is expressed widely in 
the peripheral and central nervous system and dysregu-
lated in a number of neurological and neuropsychiat-
ric conditions. A key target of NOP receptor activation 
are Cav2.2 channels which are typically inhibited upon 
receptor activation, but whose forward and reverse traf-
ficking is also regulated by NOP receptor association 
with the channel complex. In the afferent pain path-
way, there is a tight correlation between Cav2.2 chan-
nel activity and NOP receptor activation in the context 
of pain signaling (Fig. 2). In conditions such as anxiety, 
reward-seeking, and motor control the importance of 
Cav2.2 channels as downstream targets of NOP recep-
tors is more tenuous (Fig. 2). While actions on Cav2.2 
channels are consistent with what is known about this 
VGCC subtype, NOP receptors activate a plethora of 
downstream signaling cascades that are expected to 
have complex effects on neurons, glial cells, and neu-
ronal circuits. Future studies involving the activation of 
these receptors in Cav2.2 null mice will ultimately pro-
vide deeper insights into putative linkages.
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