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Abstract
Background Parkinson’s disease (PD), a globally prevalent neurodegenerative disorder, has been implicated with 
oxidative stress (OS) as a central pathomechanism. Excessive reactive oxygen species (ROS) trigger neuronal damage 
and may induce disulfidptosis—a novel cell death modality not yet characterized in PD pathogenesis.

Method Integrated bioinformatics analyses were conducted using GEO datasets to identify PD-associated 
differentially expressed genes (DEGs). These datasets were subjected to: immune infiltration analysis, gene set 
enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), intersection analysis of 
oxidative stress-related genes (ORGs) and disulfidptosis-related genes (DRGs) for functional enrichment annotation. 
Following hub gene identification, diagnostic performance was validated using independent cohorts. LASSO 
regression was applied for feature selection, with subsequent experimental validation in MPTP-induced PD mouse 
models. Single-cell transcriptomic profiling and molecular docking studies were performed to map target gene 
expression and assess drug-target interactions.

Result A total of 1615 PD DEGs and 200 WGCNA DEGs were obtained, and the intersection with ORGs and DRGs 
resulted in 202 DEORGs, 11 DEDRGs, and 5 DED-ORGs (NDUFS2, LRPPRC, NDUFS1, GLUD1, and MYH6). These genes 
are mainly associated with oxidative stress, the respiratory electron transport chain, the ATP metabolic process, 
oxidative phosphorylation, mitochondrial respiration, and the TCA cycle. 10 hub genes have good diagnostic value, 
including in the validation dataset (AUC ≥ 0.507). LASSO analysis of hub genes yielded a total of 6 target genes, ACO2, 
CYCS, HSPA9, SNCA, SDHA, and VDAC1. In the MPTP-induced PD mice model, the expression of ACO2, HSPA9, and 
SDHA was decreased while the expression of CYCS, SNCA, and VDAC1 was increased, and the expression of the 5 
DED-ORGs was decreased. Additionally, it was discovered that N-Acetylcysteine (NAC) could inhibit the occurrence 
of disulfidptosis in the MPTP-induced PD model. Subsequently, the distribution of target genes with AUC > 0.7 in 
different cell types of the brain was analyzed. Finally, molecular docking was performed between the anti-PD drugs 
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Highlight
Uncovers the key role of oxidative stress in PD progres-
sion through disulfidptosis mechanism. Identifies 5 novel 
DED-ORGs (NDUFS2, LRPPRC, NDUFS1, GLUD1, 
MYH6) involved in both oxidative stress and disulfidpto-
sis. Validates 10 hub genes with diagnostic potential and 
6 target genes in MPTP-induced PD mice model. Reveals 
cell-type-specific expression of target genes and evalu-
ates binding affinities of anti-PD drugs with the identified 
targets.

Parkinson’s disease (PD), ranked as the second most 
prevalent neurodegenerative disorder worldwide, cur-
rently affects over 6  million individuals globally. This 
figure reflects a 2.5-fold increase in prevalence over the 
past generation, resulting in its recognition as one of 
the leading causes of neurological disability worldwide 
[1]. The neuropathological hallmark of PD manifests as 
neuronal inclusions termed Lewy bodies (LBs) and Lewy 
neurites, concomitant with progressive neuronal loss in 
both the substantia nigra (SN) and multiple extra-nigral 
brain regions [2]. While the pathogenesis of PD remains 
incompletely understood, emerging evidence suggests 
the involvement of multiple interacting pathophysiologi-
cal mechanisms, including but not limited to oxidative 
stress (OS), neuroinflammation, mitochondrial dysfunc-
tion, pathological protein aggregation and propagation, 
autophagic flux impairment, dysregulation of apoptotic 
pathways, and gut microbiome dysbiosis [3]. Notably, 
accumulating evidence positions OS as a central driver of 
the degenerative cascade underlying dopaminergic neu-
rodegeneration across all forms of PD [4].

Oxidative stress (OS) arises from dysregulated cel-
lular redox homeostasis, characterized by an imbalance 
between reactive oxygen species (ROS) production and 
their clearance via endogenous antioxidant systems com-
prising enzymes and molecular chaperones. Critically, 
OS per se is not inherently pathological; instead, neuro-
nal damage is mediated by ROS accumulation resulting 
from sustained redox imbalance [5]. Emerging evidence 
from early-stage PD patients demonstrates that elevated 
OS represents a hallmark feature during disease initia-
tion, preceding substantial neuronal degeneration. These 
findings imply that uncontrolled ROS generation may act 
as a primary instigator of dopaminergic neuron death, 
rather than constituting a mere secondary consequence 

of neurodegeneration [6, 7]. Elucidating the multifac-
eted role of OS in PD pathogenesis could thus provide 
novel therapeutic targets and biomarkers for preclinical 
diagnosis.

Disulfidptosis, a recently discovered cell death modal-
ity, differs fundamentally from canonical programmed 
cell death pathways such as apoptosis, necroptosis, 
pyroptosis, autophagy, ferroptosis, or cuproptosis [8]. 
This process is defined by rapid progression initiated 
through intracellular cysteine overload induced by disul-
fide stress. Such metabolic perturbation promotes aber-
rant disulfide bonding within actin cytoskeletal proteins, 
thereby disrupting actin filament networks and pre-
cipitating catastrophic cell collapse. Given that disulfide 
generation is intrinsically linked to OS, deciphering the 
mechanistic relationship between disulfide accumulation 
and cell death holds significant implications. This novel 
cell death paradigm was co-discovered through collabor-
ative efforts between Professor Ganapathy-Kanniappan’s 
team at MD Anderson Cancer Center (USA) and Pro-
fessor Chen Junjie’s research group (China) [9]. Under 
nutrient-deprived conditions (e.g., glucose starvation) 
combined with impaired repair mechanisms, cells exhib-
iting high solute carrier family 7 member 11 (SLC7A11) 
expression develop pathological disulfide accumulation. 
This triggers disulfide stress culminating in disulfidp-
tosis—a mechanistically distinct cell death form with 
unique cytoskeletal destabilization features. Specifically, 
excessive disulfide bonds within actin filaments promote 
cytoskeletal contraction and structural disintegration, 
irreversibly compromising cellular integrity. Targeted 
inhibition of specific cell death pathways has shown ther-
apeutic efficacy in neurodegenerative diseases [10, 11], 
suggesting that disulfidptosis modulation may offer inno-
vative treatment strategies for PD and related disorders.

Emerging evidence highlights a complex interplay 
between OS and disulfidptosis in the pathogenesis of 
neurodegenerative diseases. Systematic identification of 
key biomarkers could uncover novel therapeutic avenues 
for these age-associated disorders. In this multi-omics 
investigation, we first retrieved PD-related differentially 
expressed genes (DEGs) from the GEO database (Acces-
sion:  h t t p  s : /  / w w w  . n  c b i  . n l  m . n i  h .  g o v / g e o /) [12], which 
were subsequently analyzed for immune microenvi-
ronment profiling and pathway enrichment via Gene 

entering clinical phase IV and the target genes. LRPPRC has low binding energy and strong affinity with duloxetine 
and donepezil, with binding energies of -7.6 kcal/mol and − 8.7 kcal/mol, respectively.

Conclusion This study elucidates the pathogenic role of OS-induced disulfidptosis in PD progression. By identifying 
novel diagnostic biomarkers (e.g., DED-ORGs) and therapeutic targets (e.g., LRPPRC), our findings provide a 
mechanistic framework for PD management and lay the groundwork for future therapeutic development.
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Set Enrichment Analysis (GSEA). Following this, a tri-
partite integration strategy was employed to intersect 
PD-DEGs with disulfidptosis-related genes (DRGs) and 
OS-associated genes (ORGs), enabling functional enrich-
ment analysis and hub gene prioritization. The trans-
lational potential of these hub genes and differentially 
expressed disulfidptosis-OS-related genes (DED-ORGs) 
was rigorously validated through diagnostic perfor-
mance evaluation and mechanistic interrogation. Fur-
thermore, computational mapping of hub gene-drug 
interaction sites revealed druggable targets for clinically 
approved anti-PD agents. Collectively, this framework 
provides a molecular blueprint for rational drug design 
and personalized therapeutic strategies, while eluci-
dating the synergistic roles of OS and disulfidptosis in 
neurodegeneration. These advances are poised to rede-
fine mechanistic understanding in PD research, accel-
erate biomarker-driven clinical trials, and ultimately 
enhance patient outcomes through precision medicine 
approaches.

Materials and methods
Data acquisition
In this study, the data analysis was completed using R 
software (version 4.2.1) and the following R packages: 
GEOquery (2.64.2) was used to download the datasets 
GSE20292, GSE20163, GSE20164, GSE49036, GSE24378, 
GSE49126, and GSE99039 from the GEO database; 
limma (3.52.2) was used for data normalization and dif-
ferential analysis; and ggplot2 (3.4.4) and Complex-
Heatmap (2.13.1) were responsible for visualization. 
The datasets information was listed in Table 1. Figure 1 
depicts the flow chart of this study. 103 DRGs [13] were 
shown in Supplementary Table S1, and 1399 ORGs with 
the relevance score ≥ 7 were downloaded from the Gen-
eCards database [14] (https://www.genecards.org) for 
further analysis (Supplementary Table S2).

GSEA and immune infiltration analysis
GSEA systematically evaluates the coordinated expres-
sion patterns of gene sets curated from the Molecular 

Signatures Database (MSigDB;  h t t p  s : /  / w w w  . g  s e a  - m s  i 
g d b  . o  r g / g s e a / m s i g d b) [15] against phenotype-specific 
gene rankings. This computational approach determines 
the statistical association between predefined biologi-
cal pathways and disease phenotypes. All analyses were 
performed using the clusterProfiler R package (v4.4.4) 
in R statistical environment (v4.2.1).Single-sample gene 
set variation analysis (ssGSEA) was implemented via the 
GSVA R package [16] to quantify immune cell abundance 
using transcriptomic data. A panel of 24 immune cell-
type-specific gene signatures, derived from published 
immunological resources [17], was applied to compute 
infiltration scores reflecting tissue-level immune micro-
environment composition. Comparative visualization 
of immune cell distributions between PD patients and 
healthy controls was achieved through boxplot analysis.

Weighted gene co-expression network analysis (WGCNA)
WGCNA aimed to identify gene modules that are co-
expressed and explore the association between gene 
networks and phenotypes of interest, as well as to iden-
tify hub genes within the networks. We established a 
weighted adjacency matrix, defined a correlation power 
(soft thresholding parameter) that demonstrated strong 
relations between genes and penalizing the weak cor-
relation. Then we converted the adjacency into a topo-
logical overlap matrix (TOM) to measure the network 
connectivity of gene. The TOM summed the adjacent 
genes’ contributions to calculate the network gene ratio 
and determined. We used average linkage hierarchical 
clustering based on TOM dissimilarity measurements to 
classify genes with similar expression profiles into gene 
modules. These modules were represented by branches 
and different colors in the cluster tree. We constructed 
module relationships and screened genes accordingly 
[18].

Differential expression genes analysis
Intersection analysis was visualized using the venneuler 
R package (v1.1.3) in R v4.2.0 to map overlapping rela-
tionships among DEGs, WGCNA DEGs, ORGs, and 

Table 1 The detailed information of PD datasets
GEO dataset Platform Sample information
GSE20292 GPL96[HG-U133A] Affymetrix Human Ge-

nome U133A Array
11 PD patients and 18 healthy controls from SN samples

GSE20163 8 PD patients and 9 healthy controls from substantia nigra (SN) samples
GSE20164 6 PD patients and 5 healthy controls from SN samples
GSE49036 GPL570 [HG-U133_Plus_2] Affymetrix 

Human Genome U133 Plus 2.0 Array
Control Braak α-synuclein Stage 0: 8 samples; α Braak α-synuclein stage 1–2: 5 
samples; Braak α-synuclein 3–4: 7 samples; Braak α-synuclein stages 5–6: 8 samples

GSE99039 233 healthy controls and 205 IPD patients from whole blood
GSE24378 GPL1352 [U133_X3P] Affymetrix Human 

X3P Array
human dopamine (DA) from postmortem brains of 8 PD patients and 9 healthy 
controls

GSE49126 GPL4133 Agilent−014850 Whole Human Ge-
nome Microarray 4 × 44 K G4112F (Feature 
Number version)

30 PD patients and 20 healthy controls from peripheral blood mononuclear cells 
(PBMC)

https://www.genecards.org
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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DRGs. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway and Gene Ontology (GO) enrichment 
analysis of DEORGs, DEDRGs, and DED-ORGs were 
conducted using the “clusterProfiler” and “GOplot” pack-
ages in R software.Protein-protein interaction (PPI) net-
works were constructed through the STRING database  (   
h t t p s : / / s t r i n g - d b . o r g     ) [19], with topological centrality  e v 
a l u a t e d by 12 Cytohubba algorithms in Cytoscape v3.9.0 
to identify top 10 hub genes. Functional characterization 
of hub genes was annotated via the GeneCards database 
(https://www.genecards.org/). Additionally, the ggplot2 
[3.3.6] and ggwordcloud [0.6.0] packages were used to 
visualize the frequency of hub gene occurrences. The hub 
genes were displayed through heatmaps and box plots in 
both PD patients and healthy controls. Spearman corre-
lation analysis was conducted using R software version 
4.2.1, specifically leveraging the ggplot2 [3.3.6] package 
for visualization, and the results were presented in a pie 
chart. Gene visualization in chromosome mapping was 
achieved using R software version 4.2.1 with the circular-
ize [0.4.15] package.

ROC and LASSO analysis
To identify diagnostic genes, we conducted receiver oper-
ating characteristic (ROC) curve visualization analysis 
and calculated the area under the curve (AUC) using the 
pROC package in R software, aiming to ascertain the pre-
dictive value of the hub gene. Genes with an AUC > 0.700 
were selected as diagnostic genes. The Least Absolute 
Shrinkage and Selection Operator (LASSO) analysis, a 
widely adopted method for feature selection and regu-
larization, is frequently utilized in both linear and logis-
tic regression models. By employing R software (version 
4.2.1) with the glmnet package (version 4.1.7), we ana-
lyzed the cleaned data to derive variable coefficients, 
logarithms of lambda values, L1 regularization param-
eters, lambda values, likelihood values, or classification 
error rates, and visualized the data accordingly. Addition-
ally, we analyzed the expression of genes in various brain 
cells using the Human Transcriptome Cell Atlas database 
(https://www.htcatlas.org/).

Fig. 1 The flow chart of this study. GSEA, gene set enrichment analysis; WGCNA, weighted gene co-expression network analysis; DEGs, diferentially 
expressed genes; ORGs, oxidative stress-related genes; DRGs, disulfidptosis-related genes; DEORGs, diferentially expressed oxidative stress-related genes; 
DEDRGs, diferentially expressed disulfidptosis-related genes; DED-ORGs, diferentially expressed disulfidptosis-oxidative stress-related genes; LASSO, Least 
Absolute Shrinkage and Selection Operator; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic
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Drug prediction and molecular Docking
To predict PD-related therapeutic drugs, we utilized the 
Malacards database (https://www.malacards.org/). For 
analyzing the binding affinities and interaction modes 
between the drug candidates and their targets, we 
employed AutodockVina 1.2.2, a computer-aided pro-
tein-ligand docking software [20]. The molecular struc-
tures of the compounds were retrieved from PubChem 
Compound ( h t t p  s : /  / p u b  c h  e m .  n c b  i . n l  m .  n i h . g o v /) [21], 
while their 3D coordinates were downloaded from the 
Protein Data Bank (PDB) (http://www.rcsb.org/pdb/). 
Prior to docking analysis, all protein and molecular files 
were converted to the PDBQT format, with water mol-
ecules excluded and polar hydrogen atoms added. The 
grid box was centered to encompass the binding domain 
of each protein and to allow for unrestrained molecular 
movement. The dimensions of the grid box were set to 30 
Å × 30 Å × 30 Å, with a grid point spacing of 0.34 Å (or 
0.05 nm). The molecular docking studies were conducted 
using Autodock Vina 1.2.2  (   h t t p : / / a u t o d o c k . s c r i p p s . e d 
u /     ) . Note: The grid point distance provided earlier was 
adjusted from 0.05 nm to 0.34 Å for accuracy, as 0.05 nm 
corresponds to 0.5 Å (which is not commonly used in 
docking studies), and 0.34 Å is a more typical value.

In vivo and in vitro experimental verification
Animal
Experimental protocols were conducted using male 
C57BL/6J mice (age: 6–8 weeks; weight: 25–30  g) pro-
cured from Cyagen Biosciences. F0-generation trans-
genic mice were crossed with wild-type counterparts at 
sexual maturity (8 weeks), yielding F1 progeny for experi-
mental use. All animals were housed under controlled 
environmental conditions (12/12 h light/dark cycle; tem-
perature: 22 ± 2  °C; humidity: 55 ± 5%) with ad libitum 
access to food and water. Animal procedures complied 
with the NIH Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Ani-
mal Ethics Committee of Henan University (Approval 
No.:HUSOM2021-161). To minimize bias, experimenters 
were blinded to group assignments. Following a 14-day 
acclimatization period, mice were randomly allocated to 
four experimental groups (n = 8/group): Saline control 
(0.9% NaCl, i.p. ×45 days), MPTP-lesioned (1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine; Abmole, Cat# 
M9049; 20  mg/kg/day, i.p. ×15 days) [22], NAC mono-
therapy (N-Acetylcysteine; MedChemExpress, Cat# 
HY-B0215; 1  g/kg/day, i.p. ×30 days), NAC + MPTP co-
treatment. At study termination (Day 46), subsets of ani-
mals (n = 4/group) underwent transcardial perfusion with 
0.9% saline followed by 4% paraformaldehyde (PFA) for 
histopathological analysis. Concurrently, fresh substan-
tia nigra (SN) tissues were dissected under cryogenic 

conditions, flash-frozen in liquid nitrogen, and stored at 
− 80 °C for molecular analyses.

Cell culture
The human dopaminergic neuroblastoma cell line SH-
SY5Y (Servicebio, Wuhan, China) was maintained 
in high-glucose Dulbecco’s Modified Eagle Medium 
(DMEM; Gibco, Grand Island, NY) supplemented with 
10% fetal bovine serum (FBS), 100 U/mL penicillin, and 
100 µg/mL streptomycin. Cells were cultured at 37 °C in a 
5% CO₂-humidified incubator, with medium replacement 
every 48–72  h. To establish in vitro Parkinson’s disease 
models, SH-SY5Y cells were exposed to 1 mM 1-methyl-
4-phenylpyridinium (MPP⁺; Abmole, Cat# M10041) for 
24 h [23], resulting in two experimental groups: control 
group and PD model group (MPP⁺-treated). For pharma-
cological intervention, cells pretreated with MPP⁺ were 
co-administered with either: Duloxetine (1 µM; MedChe-
mExpress, Cat# HY-B0161) or Donepezil (1 µM; Med-
ChemExpress, Cat# HY-14566). Following 4-hour drug 
exposure, cells were harvested for downstream analyses.

Western blot
SN and SH-SY5Y cells was homogenized with a Polytron 
in ice-cold RIPA buffer supplemented with PMSF (cata-
log numbers G2002 and G2008, Servicebio, China). The 
samples were sonicated and cleared by centrifugation at 
12,000×g for 10 min, at 4℃. Protein concentration in the 
supernatant was determined by BCA assay. The proteins 
were separated on SDS-PAGE gels and subsequently 
transferred onto a nitrocellulose membrane (Millipore, 
IPFL00010, Germany) by electrophoresis. The blots were 
blocked in 5% nonfat milk in TBST for 1 h at room tem-
perature and then probed with primary antibody, includ-
ing SLC7A11, ACTN4, MYL6, ACO2, CYCS, HSPA9, 
SNCA, SDHA, VDAC1, NDUFS2, LRPPRC, NDUFS1, 
GLUD1, MYH6, and β-actin (all from Affinity, Mel-
bourne), diluted in TBST with 1% nonfat milk, overnight 
at 4℃. After overnight incubation, the blots were incu-
bated with HRP-conjugated secondary antibody in TBST 
with 1% nonfat milk for 2 h at room temperature. Finally, 
the blots were developed using an Enhanced Chemilumi-
nescence (ECL) assay (BIO-Rad).

Immunohistochemistry assay
Immunohistochemistry was performed on 30-µm-thick 
serial brain sections. We used 1x Citrate Antigen 
Retrieval Solution at 98 °C for 10 min, followed by treat-
ment with 0.1% Triton X-100 for 10 min to ensure trans-
parency. The sections were then incubated with hydrogen 
peroxide for 20 min in the dark to block endogenous per-
oxidase activity. After that, they were blocked with 10% 
goat serum in PBS and incubated with tyrosine hydroxy-
lase (TH) antibody (1:200, Affinity). The TH staining was 

https://www.malacards.org/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/pdb/
http://autodock.scripps.edu/
http://autodock.scripps.edu/
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detected using a DAB kit (catalog number: G1212, Ser-
vicebio). A microscope (Leica DMI4000B; Wetzlar, Ger-
many) was used for observation. Densitometry analysis 
was performed on the scanned immunohistochemical 
images using ImageJ software.

Mitochondrial membrane potential assay
Obtained the SN from the mice brain and used the Tissue 
Mitochondria Isolation Kit (Beyotime, C3606) to isolate 
mitochondria. Subsequently, the Mitochondrial Mem-
brane Potential Assay Kit with JC-1 (Beyotime, C2006) to 
detect the mitochondrial membrane potential in the tis-
sues and cells. Additionally, a ROS probe was utilized to 
detect the fluorescence intensity of ROS in the cells.

Statistical analysis
In this study, R adaptation 4.2.0 software and Adobe 
Photoshop 2021 were utilized. The data were expressed 
as the mean ± SEM, and group comparisons were con-
ducted using an unpaired Student’s t-test or One-Way 
ANOVA. The area under the ROC curve (AUC) and pre-
dictive accuracy were assessed. Statistical significance 
was defined as a P-value less than 0.05.

Results
DEGs acquisition of PD datasets
Normalization was performed with samples from the 
GSE20163, GSE20164, and GSE20292 datasets, using 
thresholds of adjusted|logFC|>0.5 and P.adj<0.05. PCA 
and mean-variance trend analysis indicated that the 
data were reproducible and lacked significant trends, as 
observed in the distribution patterns of the box plots. 
Volcano plots were utilized to visualize the differential 
genes, resulting in the identification of 1615 DEGs in the 
PD datasets (Figs. 2A−2 C).

GSEA and immune infiltration analysis
Heatmaps depicting the immune infiltration in the PD 
datasets are shown in Fig.  2D. Compared with healthy 
controls, Mast cells, TFH, and Th1 cells were lowly 
expressed, while Cytotoxic cells and Neutrophils were 
highly expressed (Fig. 2E and F). The GSEA showed that 
DEGs were mainly involved in the neuronal system, oxi-
dative phosphorylation, neurotransmitter receptors and 
postsynaptic signal transmission, electron transport 
chain OXPHOS system in mitochondria, dopamine neu-
rotransmitter release cycle, and calcium signaling path-
way (Fig. 2G).

Fig. 2 Gene chip information acquisition and analysis. (A) The differential gene volcano map. (B) PCA analysis. (C) The gene chip expression profiles of 57 
brain tissue samples, including 25 PD patients and 32 healthy controls. (D) Boxplot of differentially expressed immune cells in the GSE20292, GSE20163, 
and GSE20164 datasets of PD. (E) and (F) Expression of immune cells in the PD group compared with the healthy controls. (G) GSEA enrichment analysis 
in the GSE20292, GSE20163, and GSE20164 datasets of PD. Compared with the healthy controls, *P < 0.05, **P < 0.01
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WGCNA identification of DEGs
Scale-free topology optimization required systematic 
parameter optimization of the adjacency matrix’s weight-
ing power (β). A parameter sweep was conducted across 
β = 1–30, with scale-free topology fit index (R²) and mean 
connectivity computed for each iteration (Fig.  3A). The 
optimal β value (β = 30) was selected to simultaneously 
maximize R² (approaching unity) while preserving bio-
logically meaningful connectivity. Using this threshold, 
13,348 genes were partitioned into co-expression mod-
ules via dynamic tree-cutting algorithms, yielding two 
distinct modules (Fig. 3B). The Grey module, represent-
ing unassigned genes with non-interpretable expression 

patterns, was excluded from downstream analyses. Hier-
archical clustering of all genes was visualized through 
a Euclidean distance heatmap (Fig.  3C). Based on the 
results of the WGCNA module division, cluster plots, 
box plots, and bar charts were employed to present mod-
ule gene expression information (Supplementary Figures 
S1A-S1C). Significant trait-related modules were identi-
fied under stringent thresholds (|correlation coefficient| 
≥ 0.3; P < 0.05) (Fig. 3D), ultimately revealing 200 DEGs.

Enrichment analysis of biological functions
The 218 targets were identified through the intersection 
of DEGs, ORGs, and DRGs (Fig.  4A). GO analysis was 

Fig. 3 WGCNA analysis of the PD datasets. (A) WGCNA network construction parameters. (B) The upper middle part of the figure is the gene cluster tree 
constructed by the dissTOM matrix constructed by the weighted correlation coefficients. The color of Dynamic TreeCut is the module identified by the 
dynamicTreeCut method. Since there is a certain correlation between some modules, the corresponding modules are merged into the same module, 
that is, the merged dynamic below is the final module, and these modules are used for subsequent analysis. (C) Cluster heatmap of all genes. (D) Trait 
module association heatmap
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divided into biological processes (BPs), cellular compo-
nents (CCs), and molecular functions (MFs). The BPs of 
the DEGs were mainly enriched in response to OS, cel-
lular respiration, cellular response to chemical stress, 
energy derivation by oxidation of organic compounds, 
electron transport chain, cellular response to OS, respi-
ratory electron transport chain, ATP metabolic process, 
oxidative phosphorylation, and mitochondrial ATP syn-
thesis coupled electron transport (Supplementary Fig-
ure S2A). The CCs of the DEGs were mainly enriched in 
mitochondrial matrix, oxidoreductase complex, mito-
chondrial protein complex, distal axon, respirasome, 
respiratory chain complex, mitochondrial respirasome, 
neuron projection terminus, mitochondrial respiratory 
chain complex I, and NADH dehydrogenase complex 
(Supplementary Figure S2B). The MFs of the DEGs were 
mainly enriched in electron transfer activity, oxidoreduc-
tase activity, acting on NAD(P)H, NADH dehydrogenase 
activity, NADH dehydrogenase (ubiquinone) activity, 

NADH dehydrogenase (quinone) activity, oxidoreduc-
tase activity, acting on NAD(P)H, quinone or similar 
compound as acceptor, lyase activity, antioxidant activ-
ity, iron-sulfur cluster binding, and metal cluster binding 
(Supplementary Figure S2C). The pathways of the DEGs 
were mainly enriched in Pathways of neurodegenera-
tion- multiple diseases, Parkinson disease, Diabetic car-
diomyopathy, Chemical carcinogenesis - reactive oxygen 
species, Amyotrophic lateral sclerosis, Alzheimer disease, 
Carbon metabolism, Huntington disease, Citrate cycle 
(TCA cycle), and Thermogenesis (Supplementary Figure 
S2D).

Analysis of PPI networks and identification of hub genes
The STRING database was used to construct the PPI net-
work to identify the interactive relationships between 218 
DEGs. A total of 217 nodes, 2035 edges, average node 
degree of 18.8, avg. local clustering coefficient of 0.445, 
and PPI enrichment p-value < 1 × 10− 16 was identified in 

Fig. 4 Analysis of the diagnostic value of 10 hub genes. (A) Venn diagram of PD DEGs, ORGs, DRGs, and WGCNA DEGs showed that there were 202 
overlapping genes between PD DEGs, WGCNA DEGs, and ORGs, 11 overlapping genes between PD DEGs, WGCNA DEGs, and DRGs, 5 overlapping genes 
between PD DEGs, ORGs, and DRGs. (B) Visualize based on the frequency of appearance of hub genes. (C) The diagnostic value of 10 hub genes includes 
GSE20292, GSE20163, and GSE20164 datasets. (D) The ROC analysis showed that the respective area under the curves (AUCs) of ACO2, AKT1, CYCS, HSPA9, 
NDUFS3, SDHA, SNCA, TXN, VCP, and VDAC1 were 0.672 (CI: 0.530–0.815), 0.557 (CI: 0.404–0.711), 0.494 (CI: 0.339–0.649), 0.703 (CI: 0.567–0.838), 0.753 (CI: 
0.624–0.881), 0.695 (CI: 0.558–0.832), 0.776 (CI: 0.654–0.899), 0.684 (CI: 0.543–0.825), 0.657 (CI: 0.513–0.802), and 0.684 (CI: 0.545–0.823)
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the PPI network (Supplementary Figure S3A). According 
to the 12 algorithms, select the following genes as hub 
genes, namely, ACO2, AKT1, CYCS, HSPA9, NDUFS3, 
SDHA, SNCA, TXN, VCP, and VDAC1 (Supplementary 
Figure S3B). Visualize based on the frequency of appear-
ance of hub genes (Fig. 4B).

Identification and validation of diagnostic feature 
biomarkers
ROC curves were used to evaluate the diagnostic value of 
10 hub genes in PD. Figure 4C and D shows the diagnos-
tic values of the 10 hub genes in the PD datasets. In the 
validation datasets (GSE49036, GSE24378, GSE49126, 
and GSE99039), the gene expression level and diagnostic 
value were further verified (Supplementary Figures S4A-
S4D). ROC analysis revealed substantial variability in 
discrimination ability across genes: ACO2 (AUC = 0.672, 
95% CI: 0.530–0.815), AKT1 (0.557, 0.404–0.711), CYCS 
(0.494, 0.339–0.649), HSPA9 (0.703, 0.567–0.838), 
NDUFS3 (0.753, 0.624–0.881), SDHA (0.695, 0.558–
0.832), SNCA (0.776, 0.654–0.899), TXN (0.684, 0.543–
0.825), VCP (0.657, 0.513–0.802), and VDAC1 (0.684, 
0.545–0.823).

Following general AUC interpretation guide-
lines, SNCA demonstrated excellent discrimination 
(AUC > 0.8), while NDUFS3 showed acceptable discrimi-
nation (0.7–0.8). Most genes exhibited poor discrimina-
tion (0.5–0.7), with CYCS performing at chance level 
(AUC ≈ 0.5). Notably, HSPA9 (0.703), SDHA (0.695), 
TXN (0.684), and VDAC1 (0.684) approached the accept-
able range despite their confidence intervals crossing 
the 0.7 threshold. These variations likely reflect inherent 
biological variability in gene expression patterns across 
individuals. While no single gene achieved consistently 
excellent discrimination, the combination of these hub 
genes may provide clinical utility for PD identifica-
tion and progression monitoring through serum pro-
tein changes. The relatively wide confidence intervals 
observed (e.g., SNCA: 0.654–0.899) emphasize the need 
for larger validation studies to precisely estimate diagnos-
tic accuracy.

Hub gene and DED-ORGs analysis
Heatmaps and boxplots were used to visualize hub genes 
and DED-ORGs in the PD datasets (Supplementary Fig-
ures S5A, S5B). Supplementary Figure S5C shows the 
correlations of the hub genes and DED-ORGs in the PD 
datasets, with most genes showing a positive correlation. 
The correlation coefficient are shown in Supplementary 
Table S3. The chromosomal location are shown in Sup-
plementary Figure S5D. The BPs were mainly enriched 
in aerobic respiration, energy derivation by oxidation of 
organic compounds, cellular respiration, oxidative phos-
phorylation, and ATP metabolic process; the CCs were 

mainly enriched in mitochondrial matrix, respirasome, 
mitochondrial protein-containing complex, inner mito-
chondrial membrane protein complex, and respiratory 
chain complex; the MFs were mainly enriched in iron-
sulfur cluster binding, electron transfer activity, 4 iron, 
4 sulfur cluster binding, NADH dehydrogenase (ubiqui-
none) activity, and oxidoreduction-driven active trans-
membrane transporter activity; the pathway were mainly 
enriched in Parkinson disease, Pathways of neurodegen-
eration - multiple diseases, Oxidative phosphorylation, 
Citrate cycle (TCA cycle), and Apoptosis (Supplementary 
Figure S5E). The biological functions of 15 genes can be 
found in Supplementary Table S4.

Expression of hub genes in MPTP-induced PD mice model
LASSO regression prioritized six candidate biomarkers 
(ACO2, CYCS, HSPA9, SNCA, SDHA, and VDAC1) with 
optimal diagnostic performance (Figs.  5  A, 5B). Immu-
nohistochemical analysis revealed significant down-
regulation of TH expression in the MPTP-treated group 
compared to Saline group (Fig.  5C and D), confirming 
successful establishment of the PD mice model. Nota-
bly, the disulfidptosis marker protein SLC7A11 showed 
elevated expression in MPTP-treated mice, indicating 
disulfidptosis activation in PD pathogenesis. Subsequent 
analysis of hub gene expression demonstrated differential 
regulation in MPTP-treated mice, ACO2, HSPA9, and 
SDHA were significantly downregulated, while CYCS, 
SNCA, and VDAC1 exhibited upregulation (Fig. 5E and 
F). Interestingly, GEO dataset analysis revealed reduced 
RNA expression of these hub genes (Supplementary Fig-
ures S5A, S5B). Potential explanations for this discrep-
ancy may include: (1) enhanced translation efficiency, (2) 
increased mRNA stability with prolonged half-life, and 
(3) biological negative feedback regulation mechanisms 
that could decouple transcriptional and translational 
outputs.

Notably, pharmacological inhibition of ROS using NAC 
significantly mitigated MPTP-induced disulfidptosis sig-
natures. While MPTP elevated SLC7A11, ACTN4, and 
MYL6 protein expression, NAC co-treatment effectively 
normalized these markers (Fig.  5G and H). Collectively, 
these data establish ROS as a critical mediator of disul-
fidptosis in PD models, highlighting oxidative stress 
modulation as a viable therapeutic strategy.

Expression of DED-ORGs in MPTP-induced PD mice model
ROC curve analysis revealed substantial variability 
in the diagnostic performance of mitochondrial bio-
markers, with LRPPRC demonstrating the highest dis-
crimination ability (AUC = 0.755, 95% CI: 0.627–0.883), 
followed by NDUFS2 (0.715, 0.579–0.851) and NDUFS1 
(0.711, 0.575–0.848), while GLUD1 (0.674, 0.530–0.819) 
and MYH6 (0.641, 0.497–0.786) showed more modest 
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performance (Fig. 6A, Supplementary Figures S4E). Fol-
lowing AUC interpretation guidelines, LRPPRC reached 
acceptable discrimination (0.7–0.8 range), with its confi-
dence interval approaching the excellent category (> 0.8). 
Notably, NDUFS2 and NDUFS1 approached the accept-
able threshold (0.7) but their CIs spanned both poor 
and acceptable ranges. This pattern suggests biological 
heterogeneity in mitochondrial gene expression profiles, 
where certain biomarkers like LRPPRC may have particu-
lar utility in clinical stratification despite the overall vari-
ability observed across targets.

Subsequent validation demonstrated significant down-
regulation of these hub genes in MPTP-treated mice 
compared to Saline group (Fig.  6B and C), confirming 
their association with PD pathology. Consistent with 
established mechanisms linking mitochondrial impair-
ment to redox imbalance [24], our findings suggest a 
pathogenic cascade: disrupted mitochondrial dynam-
ics and mitophagy → ROS overproduction → oxidative 
stress → disulfidptosis. This pathway was experimentally 
validated through mitochondrial membrane potential 
(ΔΨm) assessments. In SN tissue, saline controls exhib-
ited preserved ΔΨm evidenced by JC-1 aggregate red 
fluorescence, while MPTP treatment induced significant 
depolarization (increased green monomeric fluorescence; 
Fig.  6D and E). Parallel results emerged in SH-SY5Y 
cell models: untreated cells maintained normal ΔΨm 
(red fluorescence), whereas 1 mmol/L MPP + exposure 
caused ΔΨm collapse (green fluorescence intensification; 
Fig. 6F and G). Quantitative analysis confirmed increased 

JC-1-stained cell populations post-MPP + exposure 
(Fig.  6H and I), indicative of progressive mitochondrial 
dysfunction.

These results establish a mechanistic connection 
between MPTP/MPP+-induced mitochondrial impair-
ment and cellular pathogenesis. The observed ΔΨm dis-
sipation directly correlates with OS amplification and 
disulfidptosis activation, proposing a unified pathway 
where mitochondrial failure initiates redox dysregulation 
and subsequent non-apoptotic cell death in PD models.

Single cell type analysis
We also analyzed the expression of genes (AUC>0.7) in 
different cells of the brain during fetal development and 
adulthood, including HSPA9, SNCA, NDUFS1, NDUFS2, 
NDUFS3, and LRPPRC. For example, during fetal devel-
opment, HSPA9, NDUFS1, NDUFS2, and LRPPRC 
are highly expressed in the pericytes, SNCA is highly 
expressed in the erythroid cells, and NDUFS3 is highly 
expressed in the proliferating glia; during adulthood, 
HSPA9 is highly expressed in the astrocytes, SNCA, 
NDUFS1, and LRPPRC are highly expressed in the neu-
rons, NDUFS2 is highly expressed in the oligodendro-
cytes, and NDUFS3 is highly expressed in the granule 
cells (Supplementary Figure S6).

Molecular Docking
Our multi-phase drug discovery pipeline began with sys-
tematic screening of PD-modifying agents in the Malac-
ards database (Supplementary Table S5), prioritizing 

Fig. 5 Validation of hub genes expression in the MPTP-induced PD mice model. (A), (B) Six potential biomarkers were identified using the LASSO regres-
sion algorithm. (C) TH immunohistochemistry (Scale bar, 100 μm). (D) Statistical plot of TH positive area proportion. (E) Expression of SLC7A11, ACO2, 
CYCS, HSPA9, SNCA, SDHA, and VDAC1 proteins in SN in MPTP-induced PD mice model. (F) Statistical plot of SLC7A11, ACO2, CYCS, HSPA9, SNCA, SDHA, 
and VDAC1 proteins expression. (G) Expression of disulfidptosis marker proteins SLC7A11, ACTN4, and MYL6 in an MPTP-induced PD mice model treated 
with the ROS inhibitor NAC. (H) Statistical plot of SLC7A11, ACTN4, and MYL6 proteins expression. n = 3. Compared with the Saline group, *P < 0.05, 
**P < 0.01, ***P < 0.001; compared with the MPTP group, ##P < 0.01; compared with the NAC group, ∆P < 0.05, ∆∆P < 0.01
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compounds with established clinical efficacy. Focused 
analysis on Phase IV therapeutics (Supplementary Table 
S6) revealed Duloxetine and Donepezil as promising can-
didates for mechanistic investigation. Using Autodock 
Vina v1.2.2, we characterized the binding dynamics 
between these drugs and six PD-related targets. Compu-
tational modeling demonstrated stable ligand-receptor 
interactions, with detailed binding poses visualized in 
Supplementary Figure S7 and quantified through bind-
ing energy calculations (Fig.  7A and F, Supplementary 
Figure S8). LRPPRC exhibited favorable binding energies 
of -7.6 kcal/mol (Duloxetine) and − 8.7 kcal/mol (Done-
pezil) (Lower binding energy values indicate stronger 
molecular interactions and enhanced complex stability). 
Specific interacting residues critical for drug-target stabi-
lization are cataloged in Table 2.

In MPP+-induced PD cell models, pathological 
upregulation of LRPPRC expression confirmed disease-
associated mitochondrial dysregulation. Therapeutic 
intervention with Duloxetine or Donepezil significantly 

normalized LRPPRC levels (Fig. 7G and J). These results 
validate both the computational predictions and thera-
peutic potential of these repurposed agents in mitigating 
PD-associated molecular pathology.

Discussion
PD is a chronic and progressive neurodegeneration con-
dition characterized by the loss of dopamine neurons 
in the SN. The reason for the death of these neurons 
remains unclear; however, studies have demonstrated the 
potential involvement of mitochondria, the endoplasmic 
reticulum, α-synuclein, and dopamine levels in contrib-
uting to cellular OS as well as PD symptoms [25]. In the 
MPTP mice model of PD, time-course experiments indi-
cate that OS is an early event that may directly cause the 
death of some dopaminergic neurons. In this model, it 
appears that OS may also play a more significant role in 
the indirect loss of dopaminergic neurons by activating 
intracellular molecular pathways related to cell death. As 
the neurodegenerative process progresses in the MPTP 

Fig. 6 Validation of DED-ORGs expression and mitochondrial dysfunction in mptp-induced pd mice and SH-SY5Y cell models. (A) ROC analysis of mito-
chondrial biomarkers (NDUFS2, LRPPRC, NDUFS1, GLUD1, MYH6) for PD diagnosis. (B) Representative Western blot images of DED-ORGs protein expres-
sion in SN tissue from MPTP-treated mice. (C) Quantitative analysis of DED-ORGs protein levels in SN. (D) JC-1 staining (red: aggregates; green: monomers) 
in SN mitochondria (Scale bar, 20 μm). (E) Quantification of JC-1 fluorescence intensity ratio (aggregates/monomers) in SN. (F) JC-1 staining in SH-SY5Y 
cells treated with 1 mmol/L MPP+ (Scale bar, 50 μm). (G) Quantification of JC-1 fluorescence intensity ratio in SH-SY5Y cells. (H) ROS detection (green 
fluorescence) in MPP+-treated SH-SY5Y cells (Scale bar, 50 μm). (I) Quantitative analysis of ROS fluorescence intensity in SH-SY5Y cells. n = 3. Compared 
with the Saline group, *P < 0.05, **P < 0.01
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mice model, indicators of neuroinflammation emerge, 
such as the activation of microglia. This activation 
enhances the level of OS affecting neighboring compro-
mised neurons, thereby contributing to their demise [26].

This study uncovers the crucial role of OS-induced 
disulfidptosis in the pathology of PD. Through the use of 
an MPTP-induced PD mouse model, we observed a sig-
nificant upregulation in the expression of the disulfidp-
tosis marker protein SLC7A11, which could be effectively 
reversed by the ROS inhibitor NAC. This finding not only 
confirms the activation of disulfidptosis in PD but also 
suggests that it may lead to cytoskeleton collapse through 
abnormal disulfide bond accumulation, ultimately trig-
gering neuronal death. Notably, NAC intervention sig-
nificantly reduced the expression of ACTN4 and MYL6, 
indicating that targeting redox imbalance could emerge 

as a novel therapeutic strategy to inhibit disulfidptosis. 
Unlike previous studies [27–29], our data link disulfidp-
tosis to mitochondrial dysfunction and energy metabo-
lism disorders in PD, providing a new perspective on 
the molecular mechanisms of PD. As the primary source 
of ROS, mitochondrial dysfunction has been exten-
sively reported in PD [30–32]. Our research found that 
MPTP treatment resulted in a significant decrease in 
mitochondrial membrane potential (ΔΨm), which was 
closely associated with the downregulation of mitochon-
drial complex I subunits such as NDUFS1 and NDUFS2. 
Abnormalities in these genes may exacerbate ROS pro-
duction by disrupting the electron transport chain, cre-
ating a vicious cycle of “oxidative stress-mitochondrial 
damage.” Furthermore, single-cell analysis revealed the 
specific distribution of HSPA9 and LRPPRC in neurons 

Fig. 7 Molecular docking analysis docking sites, including (A) HSPA9 protein and Duloxetine docking, (B) SNCA protein and Duloxetine docking, (C) 
NDUFS1 protein and Duloxetine docking, (D) NDUFS2 protein and Duloxetine docking, (E) NDUFS3 protein and Duloxetine docking, and (F) LRPPRC 
protein and Duloxetine docking. (G) The expression of LRPPRC protein in a Duloxetine-treated MPP+-induced PD cell model. (H) Statistical plot of LRP-
PRC protein expression. (I) The expression of LRPPRC protein in a Donepezil-treated MPP+-induced PD cell model. (J) Statistical plot of LRPPRC protein 
expression. n = 3. Compared with the Control group, ***P < 0.001; compared with the MPP + group, #P < 0.05, ###P < 0.001; compared with the Duloxetine 
or Donepezil group, ∆P < 0.05
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and glial cells, suggesting their differential regulatory 
roles in various brain cell types. Notably, the strong bind-
ing affinity of LRPPRC to clinical drugs (such as done-
pezil) and its expression regulation in the MPP + model 
provide experimental evidence for the development of 
therapeutic regimens targeting the mitochondrial-oxi-
dative stress axis. These discoveries not only deepen our 
understanding of the pathological mechanisms of PD 
but also open up a new direction for precision treatment 
based on disulfidptosis.

In order to further explore the biomarkers of OS-
induced disulfidptosis, hub genes were screened using 
cytohubba, with an AUC > 0.7 selected as the biomarker 
for PD, namely, HSPA9, SNCA, NDUFS1, NDUFS2, 
NDUFS3, and LRPPRC. These genes were mainly 
enriched in pathways related to aerobic respiration, oxi-
dative phosphorylation, and ATP metabolic process. 
HSPA9 expression has been shown to be regulated by dif-
ferent cellular stresses such as glucose deprivation, oxida-
tive injury, ionizing radiation, and calorie restriction [33]. 
Low levels of HSPA9 were first observed in post-mortem 
brains of PD patients and individuals suffering from Par-
kinsonism due to manganese exposure [34]. Manganese 
and rotenone, recognized environmental factors in PD, 
directly target mitochondria and result in a reduction 

of HSPA9 levels in the mitochondrial matrix [35]. Con-
sequently, HSPA9 depletion in the brain could exacer-
bate PD symptoms following exposure to environmental 
toxicants. Additionally, studies have demonstrated that 
HSPA9 interacts with proteins associated with familial 
forms of PD. Direct interactions between HSPA9 and 
both α-synuclein and DJ-1 have been described, albeit 
without functional elucidation [36]. Consistent with this, 
aggregated α-synuclein can bind to HSPA9 [36], poten-
tially impeding its normal function and leading to protea-
somal degradation. This may help explain the toxicity of 
α-synuclein towards mitochondria [37]. In this study, it 
was found that the MPTP-induced PD mice model exhib-
ited decreased levels of HSPA9, which may be a contrib-
uting factor in the pathophysiology of PD.

As the primary component of LBs, α-synuclein is a 
well-known contributor to the pathogenesis of PD, with 
duplications, triplications, and point mutations in its 
N-terminal region (A30P, A53T, and E46K) linked to 
familial PD [38, 39]. The accumulation of α-synuclein 
can exacerbate OS through its direct interaction with 
mitochondrial membrane proteins [40]. In our study, 
the MPTP-induced PD mice model exhibited high 
expression of SNCA protein, which is implicated in OS 
and disulfidptosis processes. The over-expression or 

Table 2 Vina score and amino acid sites of drug molecular Docking with protein
Protein Drug Vina score ( 

kcal/mol)
Amino acid sites

HSPA9 Duloxetine −7.1 Chain A: ASN31 GLY32 LEU33 SER34 HIS35 PHE38 ARG39 SER42 ARG43 TYR46 ALA47 SER48 ILE51 
ARG218 GLU263 GLN424 VAL427 LEU428 ALA429 GLY430 VAL432 THR433 ASP434 VAL435 LEU436 
LEU437 LEU438 ILE464 PRO465 ALA526

SNCA −4.4 Chain A: MET1 ASP2 VAL3 PHE4 MET5 LYS6 GLY7 LEU8 SER9 ALA11 LYS12
NDUFS1 −7.6 Chain A: PRO167 LEU168 LYS170 SER233 LYS234 PRO235 TYR236 ALA237 PHE238 THR239 VAL270 

MET271 TYR294 ASP295 LYS298 ARG299 GLN705 THR706 LYS709 LYS712 ALA713 ALA720 VAL721 
GLU722 GLU723 PRO724 SER725

NDUFS2 −6.0 Chain A: LEU153 ALA154 GLU156 LYS157 ASN160 ILE161 ARG162 PRO163 GLN168 THR305 GLN306 
PRO307 TYR308 ASP309 ASP312 TYR397 THR398 ALA399 ILE400 TYR410 LYS423 ILE424 LYS425 ALA426

NDUFS3 −6.9 Chain A: ASN51 ALA54 LYS56 GLN57 LEU58 ALA60 PHE61 TYR64 PHE81 ASN82 ASN105 ALA106 
GLN107 PHE108 SER134 PHE137 ASN138 SER139 ARG140

LRPPRC −7.6 Chain A: LEU52 LEU53 SER54 PRO55 ALA56 PRO369 SER370 VAL371 SER374 HIS403 SER404 PHE405 
GLN408 PHE409 LEU411 HIS412 LEU415 PHE435 PRO436 ARG438 HIS440 TYR441

HSPA9 Donepezil −8.4 Chain A: HIS35 PHE38 ARG39 VAL41 SER42 ARG43 ASP45 TYR46 ALA47 SER48 GLU49 ALA50 ILE51 
ARG218 LYS259 GLY260 VAL261 GLN424 VAL427 LEU428 ALA429 GLY430 VAL432 THR433 ASP434 
VAL435 LEU436 LEU437 LEU438 ASP439 THR463 ILE464 PRO465 THR466 ASP525 ALA526

SNCA −5.5 Chain A: ILE88 ALA89 ALA90 THR92 GLY93 PHE94 VAL95 LYS96 LYS97 ASP98 GLN99 LEU100 GLY101 
LYS102 ASN103 GLU104 GLU105

NDUFS1 −8.6 Chain A: ASP162 LYS163 ASN164 ILE165 GLY166 PRO167 VAL169 LYS170 THR171 LYS234 PRO235 
ALA237 PHE238 THR239 GLU269 TYR294 ASP295 LYS298 ARG299 GLN705 THR706 LYS709 LYS712 
ALA713 ALA720 VAL721 GLU722 GLU723 PRO724 SER725

NDUFS2 −7.4 Chain A: LEU153 GLU156 LYS157 ASN160 ILE161 ARG162 PRO163 GLN168 LEU284 GLY287 PHE288 
LEU293 ILE298 TRP300 LEU302 THR305 GLN306 PRO307 TYR308 ASP309 ASP312 TYR397 THR398 
ALA399 GLU406 TYR410 LYS423 ILE424 LYS425

NDUFS3 −7.6 Chain A: ARG48 ASN51 ALA54 GLN57 LEU58 ALA60 PHE61 TYR64 GLU67 PHE81 ASN82 GLU83 ASN105 
ALA106 PHE108 SER134 PHE137 ASN138 SER139 ARG140

LRPPRC −8.7 Chain A: GLY51 LEU52 LEU53 SER54 PRO55 ALA56 LEU58 TYR59 PRO369 VAL371 SER374 HIS403 
SER404 PHE405 GLN408 PHE409 LEU411 HIS412 LEU415 PHE435 PRO436 ARG438 HIS440 TYR441
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misfolding of α-synuclein increases the production of 
ROS [41] and increases the cell’s sensitivity to OS [42, 
43]. SNCA transgenic mice show increased susceptibil-
ity to MPTP and 6-OHDA [44, 45]. Dopaminergic neu-
rons derived from induced pluripotent stem cells (iPSCs) 
of PD patients with SNCA triplication exhibit high lev-
els of OS markers and enhanced susceptibility to H2O2, 
indicating that excess α-synuclein fundamentally alters 
the balance between ROS production and antioxidant 
activity in dopaminergic neurons [46]. Furthermore, the 
accumulation of α-synuclein within the inner mitochon-
drial membrane inhibits the activity of complex I, leading 
to mitochondrial dysfunction and increased OS [47]. As 
an agonist of toll-like receptor 2, oligomeric α-synuclein 
has the potential to activate microglia [48], resulting in 
elevated ROS production, followed by the secretion of 
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), 
and IL-6 [49, 50]. Notably, the increased ROS levels may 
contribute to the aggregation of α-synuclein [50], which 
in turn exacerbates OS, creating another neurotoxic 
vicious cycle.

NDUFS1, the largest core subunit encoded by nuclear 
genes, is a component of the complex containing eight 
iron-sulfur chains and is responsible for the oxidation 
of NADH [51, 52]. Proton translocation across the inner 
mitochondrial membrane generates an electrochemi-
cal gradient that drives ATP production in complex V. 
As a byproduct of simultaneous ATP production, ROS 
are also generated in several mitochondrial complexes, 
mainly complex I. A previous study demonstrated that 
Ndufs1 knockdown in neurons resulted in impaired 
oxygen consumption and increased mitochondrial ROS, 
and upregulated NDUFS1 expression in astrocytes 
also decreased ROS generation [53]. In skin fibroblasts 
obtained from patients with the NDUFS1 mutation, a 
high level of OS was found, accompanied by a decrease 
in complex I activity, impaired oxygen consumption, 
and increased glycolysis [54]. As the starting point of 
the mitochondrial ETC, NDUFS1 is a dual “engine” for 
ATP and ROS production and plays a vital role in meta-
bolic reprogramming, OS, and cell apoptosis in several 
diseases [55]. NDUFS2-knockout mice displayed pro-
gressive, axon-first, levodopa-responsive parkinsonism, 
resembling that seen in humans [56]. NDUFS3-deficient 
cells revealed that it is possible to systematically induce 
mitochondrial dysfunction by gene silencing NDUFS3 
expression, which is known to be one of the precursor 
subunits in the mitochondrial complex I assembly [57]. 
NDUFS1, NDUFS2, and NDUFS3 are closely related to 
mitochondrial energy generation, and their abnormali-
ties may lead to insufficient energy within mitochondria, 
which can cause functional damage to nerve cells and 
accelerate their death, ultimately leading to symptoms of 
PD. Research on NDUFS1, NDUFS2, and NDUFS3 can 

help reveal the molecular mechanisms of PD and may 
provide new targets for treating the disease. For example, 
improving mitochondrial function or enhancing antioxi-
dant capacity may be potential intervention strategies.

LRPPRC functions as a crucial posttranscriptional reg-
ulator of mitochondrial DNA expression and is essential 
for the polyadenylation and coordination of mt-mRNA 
translation [58]. Research indicates that LRPPRC and 
NDUFS1 are resistant to disulfidptosis, and their inacti-
vation works synergistically with glucose deprivation to 
induce cell death [59]. Within mitochondria, LRPPRC 
interacts with the translation initiation factor 4E (eIF4E) 
to regulate the export, stability, and translocation of 
mRNA [60]. In conjunction with Parkin, LRPPRC poten-
tially contributes to the pathogenesis of PD [61]. LRP-
PRC levels are significantly reduced in PINK1-deficient 
dopaminergic neuronal cells, and over-expression of 
LRPPRC enhances complex IV activity, suggesting that 
PINK1 modulates complex IV activity through interac-
tions with LRPPRC [62]. Specific minigene assays target-
ing PD-related genetic variants demonstrate that intronic 
variants of LRPPRC affect pre-messenger RNA splicing 
by regulating the inclusion of corresponding exons, and 
this phenomenon is linked to the risk of PD and associ-
ated disorders [63, 64]. These findings illustrate that LRP-
PRC may play a significant role in the pathogenesis of PD 
and present a potential therapeutic target for the disease. 
The development of appropriate animal models will be of 
importance in understanding the role of LRPPRC in PD 
progression.

Although this study provides novel insights into the 
role of disulfidptosis in the pathogenesis of PD, several 
limitations still deserve consideration. In terms of sam-
ple size and data source, the sample size in each group of 
the experimental validation cohort (such as the MPTP-
induced PD mouse model) is relatively small (n = 3), 
which may limit the statistical power and generalizabil-
ity of the research findings. The publicly available data-
sets (such as GEO) used for biomarker discovery and 
validation have incomplete clinical metadata (such as 
disease stage and medication history) and heterogeneity 
in tissue sources (such as post-mortem brain and periph-
eral blood), which may introduce biases and necessi-
tate cautious interpretation of the results. Regarding 
the biological complexity of disulfidptosis, although key 
mitochondrial and oxidative stress-related genes (such 
as NDUFS1 and LRPPRC) have been identified as the 
core of disulfidptosis, the regulatory network may extend 
beyond actin cytoskeletal proteins. Other pathways, 
such as redox-sensitive kinases or metabolic enzymes, 
may also be involved in disulfide stress, but they were 
not explored in this study. As for the translational chal-
lenges of blood-based biomarkers, although peripheral 
biomarkers (such as SNCA and LRPPRC) have shown 
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diagnostic potential in blood samples (GSE49126 and 
GSE99039), their clinical utility has not been validated 
yet. The discordance of blood-brain transcription and 
confounding factors (such as systemic inflammation) 
require large-scale longitudinal studies to confirm their 
specificity and sensitivity for the early detection of PD. 
In terms of mechanism, the interaction between disul-
fidptosis and other cell death pathways (such as ferrop-
tosis and apoptosis) in PD remains unclear. Future work 
should clarify the crosstalk mechanism and identify ther-
apeutic targets with minimal off-pathway effects.

To address these limitations, we propose to expand pre-
clinical models by incorporating human induced pluripo-
tent stem cell (iPSC)-derived neurons and non-human 
primates to enhance translational relevance; conduct 
multi-omics integration (proteomics and metabolomics) 
to discover novel regulators of disulfidptosis; and carry 
out prospective clinical trials to validate blood-based 
biomarkers and evaluate the regulatory effect of NAC or 
repurposed drugs (such as Duloxetine) on disulfidpto-
sis in PD patients. These improvements will deepen our 
understanding of disulfidptosis and accelerate its transla-
tion into diagnostic and therapeutic strategies for PD.
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