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fine caliber axons among the corticospinal tracts (CSTs) 
after intravenous infusion of MSCs in a rat model of con-
tused SCI. MSC infusion highlighted this phenomenon of 
enhanced CST networks when imaged with adeno-associ-
ated viral (AAV) vectors, whereas this effect was not evi-
dent with vehicle infusion [4].

The rubrospinal tract (RST) is another major descend-
ing pathway from the brain to the spinal cord. In rats, the 
RST originates in the red nucleus of the midbrain and 
predominantly crosses to the contralateral side at the 
ventral tegmental decussation. Following this decussa-
tion, the RST descends through the lateral-most aspect of 
the dorsolateral funiculus. This study examined whether 
intravenous infusion of MSCs promotes areal distribu-
tion of the axonal signals in the RST as compared to vehi-
cle infusion in SCI rats.

In the current study, intravenous infusion of MSCs 
was performed one day after SCI contusion induction. 
We injected 1.0 × 106 cells in 1.0 mL of fresh DMEM or 
vehicle (1.0 mL fresh DMEM alone). A SCI was induced 

Traumatic insults of the spinal cord result in persistent 
neurological deficits below the level of the lesion. Intra-
venous infusion of mesenchymal stem cells (MSCs) has 
shown therapeutic efficacy for spinal cord injury (SCI) 
via multiple and orchestrated mechanisms, including 
axonal regeneration, affecting injured spinal tissue [1–4]. 
Recently, we demonstrated an enhanced axonal network 
by promoting the axonal signal intensity of pre-existing 
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Abstract
Limited spontaneous recovery occurs after spinal cord injury (SCI). However, current knowledge indicates 
that multiple forms of axon growth in spared axons can lead to circuit reorganization. Intravenous infusion of 
mesenchymal stem cells (MSCs) provides functional improvements after SCI with an increased axonal network. In 
this study, we examined how intravenous infusion of MSCs facilitates axonal connections in the rubrospinal tract 
(RST), one of the significant descending tracts, using AAV neuronal tracing techniques. Our finding demonstrated 
that infused MSCs significantly enhanced axonal signal intensity in the RST, not only around the injury site but also 
in the rostral and caudal regions, suggesting that neural circuit reorganization is facilitated.
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at the T9–10 levels using an Infinite Horizons impactor 
(Precision Systems and Instrumentation, LLC, Lexing-
ton, KY, USA) (150-kdyn). As previously reported [1, 
3, 4], we confirmed functional improvements follow-
ing MSC infusion in this model. We used age-matched, 
untreated rats without SCI induction, vehicle, or MSC 
infusion as a control group. As an AAV anterograde 
tracer, tdTomato-encoding AAVs with a CAG promoter 
(AAV-8-CAG-tdTomato) were used (Vector Biolabs, 
Malvern, PA, USA). Fourteen days after SCI induction 
(13 days after MSC or vehicle infusion), SCI and control 
rats were anesthetized with intraperitoneal injection of 
ketamine (75 mg/kg) and xylazine (10 mg/kg) and placed 
in a stereotaxic frame. We injected AAV anterograde 
tracers into the left red nucleus to visualize the right spi-
nal RST axons (n = 5/intact group; n = 5/vehicle group; 
n = 5/MSC group). A single injection was made into the 
red nucleus (AAVs; 4.0 × 1010 genome copy/µL, 210 nL) at 
the following coordinates: 1.0 mm lateral, 8.0 mm depth, 
and 6.0  mm posterior to the bregma, using a nanoliter-
injector (World Precision Instrument Inc., Sarasota, FL, 
USA) attached to a pulled glass pipette. The needle was 
left in place for 3  min after injection. The method used 
in this study allowed us to perform precise micro-deliv-
ery of viral vectors to specific brain regions. Histological 
analysis was performed eight weeks after SCI induction 
(six weeks after AAV injection). The intact group was 
perfused at the same time point as the vehicle and MSC 
groups, six weeks after AAV injection. The rats were per-
fused transcardially with cold phosphate-buffered saline 
(PBS), followed by 4% paraformaldehyde, while under 
deep anesthesia with an intraperitoneal injection of ket-
amine (75  mg/kg) and xylazine (10  mg/kg). The spinal 
cords were then dissected and stored at − 80 °C until fur-
ther use. Sections were cut to a thickness of 50 μm using 
a cryostat (Sakura Seiki Co, Tokyo, Japan) and washed 
three times with PBS containing 0.1% Tween 20 (PBS-
T). Sections at the C4-5, Th7-8, and L1-2 levels were 
examined (n = 5/group) using a confocal microscope 
(Zeiss LSM780 ELYRA S.1 system; Carl Zeiss, Jena, Ger-
many) and tdTomato+ fluorescence was assessed. The 
detailed methods used in this study are provided in the 
supplementary material. We provide a schema of the 
horizontal spinal cord, displaying the longitudinal levels 
of coronal sections (green lines) at the C5, Th7, and L2 
levels (Fig.  1A). The axonal distribution of RST, visual-
ized using AAV-8-CAG-tdTomato, was located in the 
lateral funiculus (LF) (Fig.  1B) [5]. In intact animals, 
tdTomato+ RST axons were consistently located in the 
LF (Fig. 1C1, 1C4, and 1C7) throughout the spinal cord. 
In vehicle-treated SCI animals, tdTomato+ RST axons 
were more prominently observed rostral to the lesions 
(Fig. 1C2, 1C5) compared to intact animals. This axonal 
prominence rostral to the lesions was more evident in 

MSC-infused animals compared to intact and vehicle-
treated groups (Fig. 1C3, 1C6). Although a few dTomato+ 
RST signals were observed caudal to the lesion in the 
vehicle group (Fig.  1C8), tdTomato+ RST signals caudal 
to the injury in the MSC-infused group appeared at the 
expected RST position within the LF (Fig. 1C9).

A heatmap generated from the tdTomato+ RST signal 
distribution at C5 (Fig.  1D1-1D3), Th7 (Fig.  1D4-1D6), 
and L2 (Fig.  1D7–1D9) levels revealed the topographic 
distribution of RST axons in experimental groups. Quan-
titative analysis of the areal distribution of the axonal 
signals in the spinal cord was performed on the side con-
tralateral to the AVV injection in the red nucleus (Fig. 1E 
for C5, 1F for Th7, 1G for L2), white matter (Fig. 1H for 
C5, 1I for Th7, 1J for L2), and gray matter (Fig.  1K for 
C5, 1 L for Th7, 1M for L2). Rostral to the lesions at C5 
(Fig.  1E) and Th7 (Fig.  1F), the MSC group showed the 
highest signal distribution, followed by the vehicle group 
and then the intact group. Caudal to the lesion at the L2 
level (Fig.  1G), the signals in the MSC group were sta-
tistically higher than those in the vehicle group. In the 
white matter (Fig.  1H and I, and 1J) and grey matter 
(Fig.  1K  L, and 1M), the quantitative analyses revealed 
patterns of statistical significance consistent with those 
observed in the total spinal cord area at each segmental 
level, while, there were no statistically significant differ-
ences in white matter at the C5 level between the intact 
and vehicle groups (Fig. 1H), and in gray matter at the L2 
level among the groups (Fig. 1M). Of particular interest, 
rostral to the lesion in the spinal cord, the vehicle group 
exhibited a greater areal distribution of the axonal signals 
on the side contralateral to the AVV injection in the red 
nucleus compared to the intact group, which was further 
enhanced by the MSC group (Fig. 1E and F). These find-
ings indicate that, as a response to SCI, axonal plastic-
ity is enhanced even in cervical regions distant from the 
lesion site and that MSC administration further amplifies 
this phenomenon. Additionally, at caudal levels, the areal 
distribution of the axonal signals in the MSC group was 
significantly greater than in the vehicle group in the white 
matter (Fig. 1J), not in gray matter (Fig. 1M).

Although the exact mechanisms remain to be eluci-
dated, the probability of the number of converging axons 
beyond the lesion is increased. Therefore, the regenera-
tion of the RST in the current study might also contrib-
ute to functional improvements following intravenous 
infusion of MSCs in contused SCI [6]. In addition, our 
findings in the previous paper provided another possi-
bility that axonal enhancement of small caliber axons is 
more likely than frank regeneration or sprouting [4]. It is 
unlikely that the injured axons traveled through the hos-
tile environment and precisely rejoined the dorsal corti-
cal spinal tract to the lesion. Injured CST components 
formed an enhanced axonal network parallel to minor 
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CST components, converging back to the cross-sectional 
position of the dorsal CST (dCST) caudal to the lesion 
core. Only MSC infusion highlighted this phenomenon of 
these enhanced axons when imaged with adeno-associ-
ated viral (AAV) vectors, whereas this effect was not evi-
dent with vehicle infusion. The pre-existing fine caliber 
axons, which are not readily detectable by conventional 
tracing methods, increase in diameter and contribute to 
improved conduction to motor neurons below the SCI 

site [4]. It is conceivable that this novel mechanism also 
operates in RST. Finally, it should be noted that numerous 
unrecognized axonal networks may still exist within the 
spinal cord, and conventionally-undetectable fine caliber 
axons increase their diameter and become emergent after 
MSC infusion, contributing to functional improvement 
[4]. In particular, the AAV anterograde tracer provides 
more precise analysis by improving spatial resolution 
compared to conventional imaging techniques, allowing 

Fig. 1  (A) Schema of the horizontal spinal cord with cavitation showing areas of confocal analysis rostral (C5 and Th7) and caudal to the lesion (L2). (B) 
Schema of a coronal section of the spinal cord showing the RST visualized by AAV-8-CAG-tdTomato (red) injection. Confocal images of the spinal cord 
displaying the RST with AAV-8-CAG-tdTomato (red) at cervical (intact, C1; vehicle, C2; MSC, C3), thoracic spinal cord above the injury (intact, C4; vehicle, 
C5; MSC, C6), and lumbar spinal cord (intact, C7; vehicle, C8; MSC, C9), counterstained with 4’,6-diamidino-2-phenylindole (DAPI, blue). Heatmaps show-
ing axon distribution at the cervical spinal cord (intact, D1; vehicle, D2; MSC, D3), thoracic spinal cord (intact, D4; vehicle, D5; MSC, D6), and lumbar spinal 
cord (intact, D7; vehicle, D8; MSC, D9). The dashed lines indicate the boundaries of white and gray matter. Quantitative analysis at the (1E for C5, 1 F for 
Th7, 1G for L2), white matter (1 H for C5, 1I for Th7, 1 J for L2), and gray matter (1 K for C5, 1 L for Th7, 1 M for L2) levels. The y-axis indicates % axonal area 
(1E-1 M). Data were assessed for normality using the Shapiro–Wilk test. The normally distributed data were analyzed by one-way analysis of variance, and 
the Tukey–Kramer test was further used to compare post-hoc comparisons. Scale bars: 500 μm (C, D), 50 μm (insets). *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001. (n = 5 animals/group), MSC: mesenchymal stem cell

 



Page 4 of 4Hirota et al. Molecular Brain           (2025) 18:35 

us to easily detect the newly-enhanced axonal networks 
following MSC injection. The technique used in this 
study has the potential to be widely adopted for refined 
analysis of specific axons because this non-transsynaptic 
axonal tracer has the advantage of tracing only the axon, 
avoiding the projection to the interneuron in the spinal 
cord. Thus, this technique would allow us to separately 
elucidate regenerative patterns in a variety of neural 
tracts within the spinal cord after intravenous infusion 
of MSCs. We point out that there are limitations in the 
interpretation of the red nucleus AAV labeling results. 
First, although all AAV injection procedures were per-
formed using identical stereotaxic coordinates and injec-
tion volumes to target the red nucleus with precision, we 
cannot rule out the possibility of some ectopic labeling 
of neurons near the red nucleus.　Second, this study has 
a detection limit because axons were directly observed 
using tdTomato+ signals under confocal microscopy. Spe-
cifically, only axons above a signal detectable diameter 
could be detected, while finer-caliber axons may not have 
been visualized. Third, we cannot rule out the possibil-
ity that infused MSCs affected AAV viral transduction. 
However, since AAV was administered two weeks after 
MSC infusion, any potential influence of MSCs should be 
minimal.
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