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Chlorpromazine directly inhibits Kv1.3 
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Abstract 

Kv1.3 channels in microglia are pivotal in regulating neuroinflammation. The antipsychotic chlorpromazine (CPZ) 
demonstrates anti‑inflammatory effects by decreasing Kv1.3 activity in mPFC microglia. However, the precise 
mechanism of CPZ’s effect in the mPFC remains unclear, given that CPZ is known to inhibit dopamine receptors 
and the mPFC contains various cell types with dopamine receptors. In this study, we investigate how CPZ inhibits 
Kv1.3 channels using human Kv1.3 channel‑expressing Xenopus laevis oocytes. CPZ directly inhibits Kv1.3 channel 
currents in a concentration‑dependent manner. The CPZ‑mediated Kv1.3 channel inhibition is not voltage‑dependent, 
and CPZ accelerates Kv1.3 channel inactivation without significantly affecting its activation. Our findings suggest 
that CPZ directly blocks Kv1.3 channels without involving other ion channels or receptors, including dopamine 
receptors, thereby contributing to the understanding of its neuroinflammation‑suppressing mechanism.
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Introduction
Microglia are non-neuronal immune cells residing in the 
central nervous system (CNS), tasked with responding 
to neuroinflammation [1, 2]. In their quiescent state, 
they survey the CNS for infection and primarily 
perform a neuroprotective role [3]. However, when 
activated by external pathogens or acute brain injury, 
microglia release proinflammatory cytokines, initiating 
neuroinflammatory pathways [1, 4]. These pathways 

alter neuronal functions such as neuronal excitability, 
synaptogenesis, synaptic plasticity, and cognitive 
functions [5, 6]. Clinically, it is widely recognized that 
various neurological and psychiatric diseases, including 
Alzheimer’s disease, autism, and depression, are 
associated with neuroinflammation [3, 7, 8].

Ion channels expressed in microglia play a central role 
in modulating neuroinflammation, regulating microglial 
ramification, surveillance, chemotaxis, phagocytosis, 
ROS production, and cytokine release [9]. Specifically, 
the Kv1.3 channel in microglia is deeply involved in 
neuroinflammation and the pathology of neurological 
and psychiatric diseases [1, 10, 11]. Additionally, Kv1.3 
channels are expressed in dendritic cells [12] and T 
cells [13, 14] outside the CNS, playing a crucial role 
in regulating immune functions in the peripheral 
system. LPS-induced systemic inflammation increases 
Kv1.3 expression in brain microglia [15]. Conversely, 
inhibiting the Kv1.3 channel reduces LPS-induced 
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proinflammatory cytokine secretion, suggesting that 
LPS drives inflammatory responses through Kv1.3 
channels [16, 17]. Kv1.3 staining is observed on activated 
microglia in rodent and human infarct tissue, and the 
Kv1.3 channel inhibitor PAP-1 reduces tissue damage 
[18]. Mechanistically, a Kv1.3 channel-dependent 
pathway is proposed to regulate MHCI-mediated antigen 
presentation by microglia to CD8 + T cells [19].

Chlorpromazine (CPZ) is a typical antipsychotic drug 
used to treat schizophrenia and acts as a dopamine 
D2 receptor (D2R) inhibitor in neurons [20–24]. 
Interestingly, CPZ and other antipsychotics exhibit anti-
inflammatory effects, such as inhibiting LPS-induced 
production of proinflammatory cytokines [25–27], 
though the precise mechanism remains unclear [28]. 
Recently, CPZ has been reported to effectively suppress 
LPS-induced inflammation, while sulpiride, another 
D2R-specific antagonist, does not demonstrate efficacy 
in mitigating LPS-induced inflammation in mPFC 
microglia [29]. These findings suggest that CPZ may act 
on additional targets to regulate inflammation. CPZ was 
found to decrease Kv1.3 currents in rat megakaryocytes 
[30] and mPFC microglia [29]. However, prior research 
conducted on brain slices faced limitations in confirming 
Kv1.3 inhibition due to the coexistence of dopamine 
D2 receptors and other possible CPZ targets. Thus, the 
mechanism by which CPZ influences Kv1.3 channels 
in microglia remains unclear, as it is uncertain whether 
the effect is direct or indirectly mediated through 
downstream of other channel- or receptor-related 
mechanism.

This study aims to address these gaps by elucidating the 
direct inhibition of Kv1.3 channels by CPZ and detailing 
its underlying mechanisms. Utilizing a Kv1.3-expressing 
Xenopus oocyte model, we explored the biophysical 
mechanisms modulating Kv1.3 channel activity without 
interference from other ion channels. Our findings 
indicate that CPZ directly blocks the Kv1.3 channel in a 
masking-block manner.

Results
Direct inhibition of human Kv1.3 channel currents by CPZ
We utilized a heterologous expression system of Xen-
opus laevis oocyte model [31]. We injected in  vitro-
transcribed complementary RNA (cRNA) encoding 
the human Kv1.3 channel into oocytes and performed 
two-electrode voltage clamp experiments with 100 μM 
CPZ, monitoring steady-state and peak currents. Our 
results indicate that CPZ suppressed both the peak and 
steady-state currents within 6 min (Fig. 1A). A concen-
tration-dependent reduction in Kv1.3 channel currents 
was observed with CPZ concentrations ranging from 1 
to 100  µM (Fig.  1B–G. The peak current at a + 50-mV 
depolarizing pulse was reduced to 57.4 ± 6.1% and 
75.0 ± 6.0% of control levels after treatment with 
100 µM CPZ for 6 and 12 min, respectively (n = 4–13; 
Fig.  1B, D). Similarly, the steady-state current was 
reduced to 65.0 ± 4.2% and 63.6 ± 4.1% of control lev-
els after the same treatment durations, respectively 
(n = 5–13; Fig. 1C, E). These findings suggest that simi-
lar declines in peak and steady-state currents can be 
achieved within 6 min of CPZ exposure. Furthermore, 
CPZ showed a concentration-dependent inhibition of 
currents (Fig.  1F, G). The inhibition rates of peak and 
steady-state currents at 30  µM CPZ were 24.0 ± 4.5% 
and 13.2 ± 6.1% after 6  min (n = 5–13; Fig.  1F). At the 
same concentration, the inhibition rates for peak and 
steady-state currents were 20.7 ± 8.8% and 22.0 ± 5.1% 
after 12  min (n = 4–13; Fig.  1G). Hence, CPZ blocks 
Kv1.3 channels in a concentration-dependent manner, 
irrespective of the treatment duration (6 or 12  min). 
Comparing the effective concentration range of CPZ 
in Kv1.3-expressing Xenopus oocytes to its affinity 
for dopamine receptors poses challenges, as the pres-
ence of the vitelline membrane and yolk in oocytes 
may diminish the efficacy of CPZ [32]. These data sug-
gest that CPZ acutely inhibits Kv1.3 channel currents 
directly, without involving other ion channels or recep-
tors such as dopamine D2 receptors.

(See figure on next page.)
Fig. 1 Direct inhibition of Kv1.3 channel currents by CPZ. A Superimposed current traces obtained by applying a series of voltage pulses 
from ‑50 mV to + 50 mV upon exposure to 100 µM CPZ for 6 and 12 min. B–G Current–voltage relationship of peak (B, D) and steady‑state Kv1.3 
channel currents (C, E) in the presence of CPZ with indicated concentrations for 6 min (B, C) or 12 min (D, E). Peak currents were recorded at their 
peaks, whereas steady‑state currents were determined at the end of depolarizing pulses. Peak and steady‑state currents at + 50 mV in control 
conditions were normalized to 1. Concentration–response inhibition of peak and steady‑state currents after 6‑min (F) or 12‑min (G) exposure 
to CPZ, elicited by a single + 50 mV pulse from a holding potential of − 60 mV (n = 4–13 oocytes per concentration). H Current traces elicited by 2‑s 
depolarization from − 20 to + 50 mV from a holding potential of − 60 mV, with and without 100 µM CPZ exposure. I, J CPZ‑induced blockade of peak 
(I) and steady‑state (J) Kv1.3 currents at various voltages for 6 min (n = 5–7 oocytes per treatment). At each depolarizing voltage step, the currents 
under different CPZ concentrations were normalized to the currents recorded without CPZ exposure. K Comparison of 30 µM CPZ‑induced 
inhibition of peak and steady‑state Kv1.3 currents at various voltages for 6 min. Current inhibition (%) = 100 × (current with vehicle—current 
with CPZ)/current with vehicle. Values are shown as mean ± S.E.M
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Fig. 1 (See legend on previous page.)
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Kv1.3 channel inhibition by CPZ is not voltage‑dependent
The inhibition rate of Kv1.3 currents induced by CPZ 
was compared at different potential levels to investigate 
voltage effects (Fig.  1H). During 6  min of 30  µM 
CPZ treatment, Kv1.3 peak currents were inhibited 
by 36.8 ± 9.6%, 32.9 ± 6.2%, 30.8 ± 5.8%, 28.3 ± 4.8%, 
27.4 ± 4.9%, 25.9 ± 4.9%, 25.4 ± 4.6%, and 24.0 ± 4.6% of 
control, indicating that CPZ-induced inhibition of Kv1.3 
peak currents was not voltage-dependent (n = 5–7; 
P > 0.05, Fig.  1I). This voltage-independent suppression 
of Kv1.3 steady-steady currents by CPZ was consistent 
across concentrations ranging from 0.1 to 100  µM 
(n = 5–7; P > 0.05, Fig.  1J) and was also similar at peak 
current. Additionally, CPZ-induced inhibition of Kv1.3 
currents did not significantly differ between peak and 
steady-state currents at the same test voltage from -20 
to + 50  mV across concentrations ranging from 0.1 to 
100 µM (n = 5–7; P > 0.05, Fig. 1K), although data for 0.1-, 
1-, 10-, and 100-µM concentrations were not shown.

Effects of CPZ on time constants for Kv1.3 channel 
activation and inactivation
The effect of CPZ on time constants for channel acti-
vation and inactivation was investigated (Fig.  2A–D). 
Exposure to 30 and 100  µM CPZ for 6  min resulted in 
activation time constants (τ) at + 50  mV of 3.8 ± 0.9, 
4.3 ± 1.6, and 4.2 ± 1.7  ms, respectively (n = 5–7 oocytes, 
P < 0.05, Fig.  2A, B). These results indicate that CPZ at 
30 and 100  μM for 12  min did not significantly change 
the activation time constant. Conversely, CPZ at 30 and 
100  μM significantly decreased the inactivation time 
constants by the test pulse of + 50 mV to 473.7 ± 24.2 ms 
and 365.5 ± 14.7  ms, compared to the control value of 
636.2 ± 16.6  ms (n = 9–10 oocytes, P < 0.05, Figs.  2C, D). 
The decay curves with the single exponential model are 
depicted in the Supplementary Fig.  1. Therefore, these 
results suggest that CPZ accelerates Kv1.3 channel 

inactivation, and the drug’s effect on inactivation rate is 
greater than on activation.

Effects of CPZ on steady‑state Kv1.3 channel activation 
and inactivation
Two-pulse protocols were used to evoke tail currents 
and determine whether CPZ affects activation and 
inactivation gating. By fitting two different Boltzmann 
equations to normalized tail currents, steady-state 
activation and inactivation curves were obtained 
(Fig.  2E–H). The slope (k) of the activation curve was 
4.4 ± 0.5, 4.1 ± 0.8, and 5.5 ± 0.9 for the control and CPZ 
(100 and 300 μM) groups, respectively (n = 6–7, P > 0.05, 
Fig.  2E, F). The V1/2 values of the activation curve for 
the control and CPZ (100 and 300  μM) groups were 
− 25.9 ± 0.6  mV, − 21.4 ± 0.8  mV, and − 21.4 ± 1.0  mV 
(n = 6–7, P > 0.05, Fig.  2F), respectively. For steady-
state inactivation, the k values were 4.6 ± 0.2, 5.0 ± 0.4, 
and 5.4 ± 0.9 for the control and CPZ (100 and 300 μM) 
groups, respectively (n = 7–8, P > 0.05, Fig.  2G, H). The 
inactivation curve V1/2 values were − 35.2 ± 0.3  mV, − 35.
3 ± 0.5  mV, and − 34.4 ± 1.0  mV for the control and CPZ 
(100 and 300 μM) groups, respectively (n = 7–8, P > 0.05, 
Fig.  2H). Thus, CPZ has no significant impact on the 
steady-state activation or inactivation kinetics at 100 and 
300  μM, as indicated by the insignificant differences in 
V1/2 and k values.

Effects of CPZ on the recovery from inactivation of Kv1.3 
channel
Finally, we examination of whether CPZ alters the 
recovery from C-type inactivation of Kv1.3 channels. 
Recovery from the inhibition was investigated using 
a double-pulse protocol, with interpulse intervals 
ranging from 10  ms to 30  s (Fig.  2I–J). Under control 
conditions, the recovery from inactivation followed 
a single exponential function with a time constant 

Fig. 2 CPZ facilitates the inactivation of Kv1.3 Channel. A–D The activation and inactivation traces were fitted by single exponential functions, 
and the time constants of activation and inactivation processes were estimated from traces elicited by a single 2‑s + 50 mV pulse from a holding 
potential of − 60 mV. A Representative normalized current traces of the activation phase in the absence and presence of 30 and 100 µM CPZ 
for 12 min. Each current trace was normalized to its peak value. B Time‑constant values of activation processes with and without 30 and 100 µM CPZ 
(n = 5–7). C Representative normalized current traces of the inactivation phase in the absence and presence of 30 and 100 µM CPZ for 12 min. Each 
current trace was normalized to its peak value. D Time‑constant values of inactivation processes with and without 30 and 100 µM CPZ (n = 9–10). 
E Typical steady‑state activation tail currents measured at − 50 mV following 100‑ms depolarizing pulses from − 70 to + 50 mV with and without 
100 and 300 µM CPZ. F Steady‑state activation curves obtained by normalizing each tail current to the tail current at + 50 mV and fitting 
the data to a Boltzmann equation (n = 6–7). G Typical tail currents evoked by 200‑ms depolarizing pulses to + 40 mV; 30‑s preconditioning pulses 
from − 70 to 0 mV with and without 100 and 300 µM CPZ. H Steady‑state inactivation curves obtained by normalizing each tail current to the tail 
current when depolarized to + 40 mV and fitting the data to a Boltzmann equation (n = 7–8). *P < 0.05. I A double‑pulse protocol was employed 
to investigate the recovery of Kv1.3 from inactivation, both in the absence and presence of CPZ. The first pulse consisted of a 200 ms depolarizing 
pulse to + 40 mV from a holding potential of − 80 mV, followed by a second identical pulse after varying interpulse intervals ranging from 10 ms 
to 30 s at − 80 mV. Pulses were delivered at intervals of 30 s. J The solid lines represent the single exponential fits of the peak amplitudes of Kv1.3 
currents as a function of the interpulse interval (n = 4–5). Values are shown as mean ± S.E.M

(See figure on next page.)
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of 12.98 ± 0.59  s (n = 5). Similarly, in the presence of 
100 μM CPZ, the recovery process was best described 
by a single exponential function, yielding a time 
constant of 15.69 ± 1.14  s (n = 4). Notably, the time 
constant remained unchanged in the presence of CPZ. 

This observation suggests that the dissociation rate 
of CPZ is comparable to the transition rate between 
the open and closed states under control conditions, 
potentially explaining the use-independent inhibition 
induced by the drug.

Fig. 2 (See legend on previous page.)
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Discussion
In the previous study, we found that the anti-
inflammatory effects of CPZ are due to the inhibition 
of Kv1.3 channels expressed in activated microglia of 
the mPFC [29]. In an animal model of LPS-induced 
systemic inflammation and microglial activation in vivo, 
we confirmed the upregulation of Kv1.3 in microglia 
of mPFC slices. We demonstrated that CPZ acutely 
blocked Kv1.3 currents and suppressed the LPS-
induced upregulation of Kv1.3, suggesting that Kv1.3 
is the primary microglial target of CPZ. However, this 
hypothesis has been challenged, particularly regarding 
(1) the potential involvement of dopamine receptors 
and (2) multiple cell types in the mPFC. Most of all, it 
was unclear whether it acts directly on microglial Kv1.3 
channels or indirectly through other receptors, such as 
dopaminergic receptors, or other cell types like neurons 
or astrocytes. Microglia have been reported to express 
D2R in earlier studies, with observations made in primary 
microglia cultures [33, 34]. Upon brain ischemic injury, 
D2R expression was detected in microglia, indicating 
that injury settings can induce D2R expression [35, 
36]. Additionally, CPZ has affinity for the D1 receptor 
[37]. While LPS did not alter D2 receptor expression, 
it did increase D1 receptor expression in microglia. 
Furthermore, dopamine receptor-mediated increases 
in pro-inflammatory cytokines have been reported 
in various contexts [38–42]. Therefore, it is necessary 
to consider the potential for indirect modulation of 
dopaminergic receptors, which could be CPZ targets 
in LPS-activated microglia. In our previous research 
we demonstrated that LPS enhances Kv1.3 channel 
expression, while CPZ effectively inhibits LPS-induced 
 K+ conductance in mPFC microglia. Additionally, we 
showed that PAP-1, a Kv1.3 channel inhibitor, modulates 
the electrical properties and functions of microglia in a 
manner similar to CPZ. The comparable actions of PAP-1 
and CPZ on mPFC microglia prompted us to hypothesize 
that CPZ mediates its effects via Kv1.3 channel inhibition.

In this study, we aimed to monitor the effect of CPZ 
on Kv1.3 channels without any possible involvement 
of other receptors or cell types. We found that CPZ 
directly inhibits the Kv1.3 channel in human Kv1.3 
channel-expressing Xenopus oocytes. Additionally, we 
observed that CPZ may act on the Kv1.3 channel in a 
masking-block manner rather than as an open channel 
blocker. CPZ inhibited Kv1.3 currents in a voltage-
independent manner and did not change the gating of 
either activation or inactivation. Moreover, the inhibition 
of Kv1.3 current by CPZ was similar for both peak and 
steady-state currents, indicating that CPZ interacts 
with both the open and closed states of the channel. 
Our findings indicate that CPZ does not affect the 

recovery process from C-type inactivation of the Kv1.3 
channel. CPZ demonstrated no impact on the recovery 
time constant from inactivation, regardless of interval 
duration, suggesting its dissociation rate is comparable 
to the open-to-closed state transition. CPZ exhibits 
a unique characteristic differs from other Kv1.3 open 
channel blockers like rosiglitazone and troglitazone, 
which accelerate the decay rate of current inactivation 
in Kv1.3 channels [43]. Furthermore, compared to other 
 K+ channels, CPZ inhibits the HERG channel in its 
open state without affecting activation or inactivation 
[32], suggesting distinct binding mechanisms across  K+ 
channels. Rather than acting as a dopaminergic receptor 
inhibitor, these data suggest that CPZ functions as a 
Kv1.3 channel modulator. Kv1.3 channels have been 
reported to stabilize microglial membrane potential, 
thereby enhancing the driving force for  Ca2+ influx and 
protecting the cells against rapid depolarization, which 
is essential for microglial activation [44]. Thus it can 
be anticipated that other drugs promoting accelerated 
inactivation of Kv1.3 channels may similarly inhibit the 
electrical properties and functions of microglia, akin to 
CPZ which is potentially linked to its immunosuppressive 
mechanism.

Regarding the pharmacological effects of CPZ in the 
mPFC, we cannot completely exclude indirect effects 
of neuronal dopamine receptor inhibition and altered 
neuron-glia communication [36]. Since CPZ in the 
mPFC targets various molecules other than microglial 
Kv1.3 channels, it may still exert indirect effects by acting 
on other molecules in different cell types. In addition, 
the anti-inflammatory effects of CPZ—which occur 
at micromolar concentrations—are likely achievable 
only at higher doses than those required for dopamine 
receptor antagonism. Careful consideration is required to 
establish the optimal dose range for exploring CPZ’s anti-
inflammatory effects through Kv1.3 channel inhibition, 
rather than its role as a dopamine receptor antagonist 
in clinical applications. Nevertheless, our results are 
significant in demonstrating that CPZ directly inhibits 
Kv1.3 without other assistance, providing a clearer 
understanding of its neuroinflammation-suppressing 
effect. Our study also contributes to elucidating the 
unknown effects of immunosuppressive drugs targeting 
the Kv1.3 channel.

Together, our results using the Xenopus oocyte 
heterologous expression system conclusively showed 
that CPZ accelerates the inactivation process and 
stabilizes the closed state of the Kv1.3 channel. These 
data validate that CPZ acts directly on the Kv1.3 
channel, with Kv1.3 current inhibition independent of 
other receptors, including dopamine receptors. Our 
study aims to enhance the understanding of CPZ’s 
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mechanism in inhibiting neuroinflammation and 
its effects on brain diseases by elucidating how CPZ 
directly inhibits Kv1.3 channels.

Materials and methods
Expression of Human Kv1.3 Channel in Xenopus 
Oocytes. Complementary RNAs encoding the human 
Kv1.3 channel (GenBank accession no. BC035059.1) 
were synthesized by in  vitro transcription using 
Message Machine T7 kits (Ambion, Austin, TX, USA) 
and stored in nuclease-free water at –  80  ℃. Stage 
V and VI oocytes were surgically harvested from 
female Xenopus laevis (Nasco, Modesto, CA, USA), 
anesthetized on ice for 30  min in 10-min intervals, 
and isolated from the theca and follicle layers using 
fine forceps. Two days later, the oocytes were injected 
with 20 nl of Kv1.3 cRNA (0.4 μg/μl). Injected oocytes 
were maintained at 17ºC in modified Barth’s solution 
containing 88  mM NaCl, 1  mM KCl, 0.4  mM  CaCl2, 
0.33  mM Ca(NO3)2, 1  mM  MgSO4, 2.4  mM  NaHCO3, 
10  mM HEPES (pH 7.4), and 50  μg/ml gentamicin 
sulfate. Currents were measured 4–5  days after cRNA 
injection.

Voltage Clamp Recording of Human Kv1.3 Channel 
in Xenopus Oocytes. Kv1.3 channel-expressing oocytes 
were perfused with ND96 solution containing 96  mM 
NaCl, 2  mM KCl, 1.8  mM  CaCl2, 1  mM  MgCl2, and 
10 mM HEPES (pH 7.4) at a constant flow rate in a bath 
chamber. Currents were measured at room temperature 
(20–23  °C) using a two-microelectrode voltage clamp 
system (OC-725C, Warner Instruments, Hamden, CT, 
USA). Both voltage and current-passing electrodes were 
filled with 3 M KCl. The voltage electrode resistance was 
2.0–4.0 MΩ, and the current-passing electrode resistance 
was 2.0–2.5 MΩ. Stimulation and data acquisition were 
achieved using Digidata 1200 (Molecular Devices) 
and PClamp 9.2 (Molecular Devices). Kv1.3 channel 
currents were obtained by applying a series of voltage 
pulses from −  50  mV to + 50  mV of 2  s duration with 
10  mV increments every 20  s from a holding potential 
of −  60  mV. The time constants of activation and 
inactivation processes were estimated using single 
exponential functions from current traces evoked by 
a single + 50 mV pulse of 2 s duration every 10 s from a 
holding potential of − 60 mV.

Statistical Analysis. All statistical analyses were 
performed using SPSS 26 software (IBM). Kv1.3 channel 
use dependency recordings were analyzed by repeated 
measures one-way analysis of variance (ANOVA) with 
post hoc Bonferroni or Friedman’s test. All data are 
presented as mean ± standard error of mean (SEM). A 
P < 0.05 was considered statistically significant.
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