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Main text
L-LTP-dependent actin reorganization underlies struc-
tural plasticity [1–3], but mechanisms maintaining pro-
longed synaptic activation in enlarged spines remain 
unclear. We previously showed that L-LTP induces sER 
extension into dentate gyrus (DG) granule cell spines via 
SEPT3, supporting sustained Ca²⁺ responses and syn-
aptic activation. Furthermore, Sept3−/− mice [4], with 
fewer sER-containing spines, show normal short-term 
but impaired long-term spatial memory, with the hip-
pocampal DG as the responsible region. We showed that 
sER extension is regulated by the interaction between 
the activated MYO5A, which undergoes Ca2+-triggered 
conformational changes, and SEPT3. Additionally, we 
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Abstract
Cytoskeletal remodeling drives morphological changes. Septin cytoskeleton assembles into hetero-oligomers. We 
previously demonstrated that late-phase long-term potentiation (L-LTP) induces smooth endoplasmic reticulum 
(sER) extension into dendritic spines via septin 3 (SEPT3), contributing to greater postsynaptic Ca2+ responses 
and enhanced activation of synaptically induced Ca2+ signaling. Sept3−/− mice exhibit a reduced number of 
sER-containing spines and show impaired long-term spatial/object memory despite normal short-term memory. 
Additionally, SEPT3 binds the motor protein myosin-Va (MYO5A) upon elevated Ca²⁺ concentrations, facilitating 
sER extension from the dendritic shaft into the spine. MYO5A localizes on the sER membrane, while SEPT3 remains 
at the spine base, accumulating on sER upon electroconvulsive stimulation (ECS). However, the mechanism 
underlying SEPT3’s delocalization from the spine base and its cooperative role with MYO5A in sER extension 
remains unclear. In this study, we demonstrate that SEPT3 is phosphorylated in a stimulation-dependent manner. 
Phosphorylation at Thr211 releases SEPT3 from the spine base, enabling sER extension with constitutively active 
MYO5A mutant (MYO5A-CCtr). These findings provide molecular insight into the role of SEPT3 phosphorylation in 
regulating sER dynamics that sustain long-term spine activation.

Keywords  Septin, Phosphorylation, Smooth Endoplasmic reticulum, Spine

Phosphorylated septin 3 delocalizes from the 
spine base and facilitates endoplasmic 
reticulum extension into spines via myosin-Va
Natsumi Ageta-Ishihara1,2*, Masato Mizukami2, Itsuki Kinoshita2, Yurika Asami2, Tomoki Nishioka3,4, Haruhiko Bito5, 
Kozo Kaibuchi3 and Makoto Kinoshita2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-025-01215-9&domain=pdf&date_stamp=2025-5-14


Page 2 of 5Ageta-Ishihara et al. Molecular Brain           (2025) 18:43 

Fig. 1 (See legend on next page.)
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demonstrated that part of MYO5A localizes on the sER 
membrane, whereas SEPT3 is not under basal condi-
tions. However, while strong stimulation induces SEPT3 
accumulation on the sER membrane [5], the mechanism 
underlying this process remains unknown.

Post-translational modifications regulate protein local-
ization, and given that many signaling molecules undergo 
phosphorylation upon LTP induction in the hippocam-
pal CA1 region [6], phosphorylation plays a crucial role 
in synaptic plasticity. Therefore, we investigated whether 
SEPT3 is phosphorylated in response to strong stimula-
tion in the hippocampus DG region. Following our pre-
vious study [5], we performed co-immunoprecipitation 
(co-IP) with immunoglobulin G (IgG) or SEPT3 antibod-
ies using proteins extracted from the hippocampal DG of 
9-week-old male Sept3+/+ or Sept3−/− mice. Immunoblot 
(IB) analysis using a phosphoserine/threonine (pSer/Thr) 
antibody revealed that a band was detected at the pre-
dicted molecular weight for SEPT3 only in samples from 
the DG of Sept3+/+ mice and co-immunoprecipitated 
with a SEPT3 antibody (Fig.  1a). In our previous study, 
we reported that ECS of the molecular layer of the hip-
pocampal DG increased the number of sER-containing 
spines in Sept3+/+ mice, but not in Sept3−/− mice, and 
that the association between SEPT3 and MYO5A was 
increased 10 min after ECS induction [5]. Consistent with 
previous findings [5], ECS in 8- to 9-week-old Sept3+/+ 
male mice increased the pSer/Thr signal at the SEPT3-
predicted molecular weight via co-IP. We found that ECS 
induction increased the pSer/Thr signal detected by the 
pSer/Thr antibody (Fig. 1b).

Next, to determine the Ser/Thr residues of SEPT3 
that are phosphorylated, we predicted the phosphoryla-
tion sites of SEPT3 using the PhosphoSitePlus database, 

identifying Ser70, Ser84, Ser87, Ser91, and Ser92 as can-
didates. It has been reported that the Ser91 is phosphory-
lated by PKG, and this phosphorylation is detected in 
the cytoplasmic fraction of synaptosomes [7, 8]. Further-
more, because phosphorylation of SEPT7 and SEPT12 
has been reported to inhibit septin filament formation 
[9, 10], Thr211 residue, a homologous site in SEPT3, 
was also added as a candidate. We created these pseu-
dophosphorylation mutants and counted the number 
of sER-containing spines in primary cultures of hippo-
campal DG granule cells, where we previously reported 
L-LTP-dependent sER extension into spines [5]. As a 
result, only the SEPT3 phosphomimetic aspartic acid 
mutant (T211E) induced an increase in the number of 
sER-containing spines with no effect on spine volume 
(Fig. 1c). These results indicate that Thr211 phosphoryla-
tion of SEPT3 facilitates sER extension into spines with-
out affecting spine volume, consistent with our previous 
findings that SEPT3 regulates sER dynamics independent 
of spine size [5].

Under basal conditions, SEPT3 is localized at the 
spine base, but its localization on the sER membrane is 
increased by ECS induction [5]. We therefore examined 
the effect of phosphorylation of Thr211 residue of SEPT3 
on the localization of SEPT3 by overexpressing GFP-
tagged SEPT3-wild-type (WT), non-phosphorylatable 
alanine substitution mutant (T211A), or phosphomi-
metic aspartic acid mutant (T211E). SEPT3-WT and 
T211A localized to the spine base, while T211E showed 
a higher proportion of signal within the sER region 
(Fig. 1d).

We hypothesized that phosphorylated SEPT3 and Ca²⁺-
activated MYO5A cooperate in sER extension and tested 
this using SEPT3-T211E and MYO5A-CCtr, which lacks 

(See figure on previous page.)
Fig. 1  Phosphorylation of Thr211 residue of SEPT3 delocalizes it from the dendritic spine base and promotes sER extension into spines in cooperation 
with activated MYO5A
a, Co-IP with IgG or anti-SEPT3 antibodies using protein extracted from the hippocampal DG of Sept3+/+ and Sept3−/− male mice, followed by IB analysis 
using antibodies against SEPT3, α-Tubulin, and phosphoserine/threonine (pSer/Thr). Arrowhead indicates the SEPT3 signal.
b, Left and middle, Co-IP with anti-SEPT3 antibody using protein extracted from the hippocampal DG of Sept3+/+ male mice at 0 min and 10 min after ECS. 
Right, Normalized phosphorylation level of SEPT3 on Ser/Thr. n = 3 experiments; two-tailed unpaired t test.
c, Top, Representative images of dendritic spines and sER in primary cultured rat DG granule cells expressing wild-type (WT) or phosphomimetic mutants 
of SEPT3, showing the morphology of spines (cyan) and sER (magenta) at 21 days in vitro (DIV). Scale bar, 5 μm. Middle, Spine volume, defined as the total 
fluorescence intensity of the spine within regions of interest (ROIs) divided by the average fluorescence intensity of the dendrite within ROIs. Bottom, 
Percentage of spines with sER. n = 15 dendrites; one-way ANOVA with Tukey’s multiple comparisons test.
d, Left, Representative images of dendritic spines and GFP-tagged SETP3-WT, non-phosphorylatable alanine substitution mutant (T211A), or phosphomi-
metic aspartic acid mutant (T211E). White squares indicate the regions used for analysis. In the magnified images, white dashed lines outline the bound-
ary between the cytosol and sER. Scale bar, 0.5 μm. Right top, Quantification of sER area as a percentage of the total region of interest (ROI). Right bottom, 
Quantification of the proportion of GFP-SEPT3 fluorescence intensity (IF) within the sER area relative to the total ROI. n = 30 spines; one-way ANOVA with 
Tukey’s multiple comparisons test.
e, Top, Representative images of dendritic spines and sER from DG granule cells overexpressing SEPT3-WT or T211E, transiently co-expressing either 
MYO5A-WT or CCtr (the functionally active form). Scale bar, 5 μm. Middle, Spine volume. Bottom, Percentage of spines with sER. n = 15 dendrites; one-way 
ANOVA with Tukey’s multiple comparisons test.
f, Top, Representative images of dendritic spines and sER from DG granule cells expressing shSEPT3, an shRNA resistant mutant of SETP3-WT, T211E, or 
T211A, and/or co-expressing MYO5A-WT or CCtr. Scale bar, 5 μm. Middle, Spine volume. Bottom, Percentage of spines with sER. n = 14–17 dendrites; one-
way ANOVA with Tukey’s multiple comparisons test.
 Data are mean ± s.e.m. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significantly different.
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the autoinhibitory globular tail domain of MYO5A and 
mimics the Ca²⁺-dependent conformational change that 
activates the motor [11]. As a result, there was no change 
in spine volume in either case, but the number of sER-
containing spines increased upon expression of SEPT3-
T211E (Fig. 1e). As in our previous report, co-expression 
of SEPT3-WT and MYO5A-CCtr further increased the 
number of sER-containing spines [5], but co-expression 
of SEPT3-T211E and MYO5A-CCtr caused a similar 
increase (Fig.  1e). Since the number of sER-containing 
spines increased by approximately 90% upon chemi-
cal L-LTP induction [5], it was predicted that the num-
ber of sER-containing spines had reached an upper limit 
with co-expression of SEPT3-WT and MYO5A-CCtr. 
Therefore, we examined the cooperation between SEPT3 
and MYO5A in extending sER into spines by combining 
SEPT3 depletion via RNAi. The knockdown efficiency 
and the expression levels of shRNA-resistant SEPT3 in 
the rescue experiments were validated by quantitative 
analysis of immunofluorescence intensity (Fig. S1a, b). 
SEPT3 deficiency reduced sER-containing spines, par-
tially rescued by shRNA-resistant SEPT3-WT or T211E 
with MYO5A-CCtr, and fully rescued by T211E with 
MYO5A-CCtr. In addition, co-expression of shRNA-
resistant SEPT3-T211A with MYO5A-CCtr did not res-
cue it (Fig.  1f ). The increase in sER-containing spines 
by SEPT3-T211E was suppressed by dominant-negative 
MYO5A (Fig. S2), indicating that both phosphorylated 
SEPT3 and activated MYO5A are necessary for sER 
extension. Finally, we tested whether Thr211 phosphor-
ylation enhances SEPT3–MYO5A association. Co-IP 
using cell lysate co-expressing MYO5A and SEPT3-WT 
or T211E showed that SEPT3-T211E had greater associa-
tion with MYO5A than SEPT3-WT (Fig. S3a, b). Previ-
ously, we found that SEPT7, a core subunit of the septin 
complex, localizes to the spine base [12] and remains 
unchanged on sER localization upon ECS [5]. Together, 
these results suggest that, following L-LTP, phosphoryla-
tion of Thr211 residue of SEPT3 dissociates it from septin 
complexes at the spine base and interacts with activated 
MYO5A to regulate the extension of sER into spines.

In the future, if technology can be developed to uti-
lize these molecular mechanisms to induce sER exten-
sion into spines, it could enable the artificial induction of 
long-term memory.

Methods
Methods are described in the Supplementary Materials.
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